Protective mechanism of FSH against oxidative damage in mouse ovarian granulosa cells by repressing autophagy.

Abstract:

:Oxidative stress-induced granulosa cell (GCs) death represents a common reason for follicular atresia. Follicle-stimulating hormone (FSH) has been shown to prevent GCs from oxidative injury, although the underlying mechanism remains to be elucidated. Here we first report that the suppression of autophagic cell death via some novel signaling effectors is engaged in FSH-mediated GCs protection against oxidative damage. The decline in GCs viability caused by oxidant injury was remarkably reduced following FSH treatment, along with impaired macroautophagic/autophagic flux under conditions of oxidative stress both in vivo and in vitro. Blocking of autophagy displayed similar levels of suppression in oxidant-induced cell death compared with FSH treatment, but FSH did not further improve survival of GCs pretreated with autophagy inhibitors. Further investigations revealed that activation of the phosphoinositide 3-kinase (PI3K)-AKT-MTOR (mechanistic target of rapamycin [serine/threonine kinase]) signaling pathway was required for FSH-mediated GCs survival from oxidative stress-induced autophagy. Additionally, the FSH-PI3K-AKT axis also downregulated the autophagic response by targeting FOXO1, whereas constitutive activation of FOXO1 in GCs not only abolished the protection from FSH, but also emancipated the autophagic process, from the protein level of MAP1LC3B-II to autophagic gene expression. Furthermore, FSH inhibited the production of acetylated FOXO1 and its interaction with Atg proteins, followed by a decreased level of autophagic cell death upon oxidative stress. Taken together, our findings suggest a new mechanism involving FSH-FOXO1 signaling in defense against oxidative damage to GCs by restraining autophagy, which may be a potential avenue for the clinical treatment of anovulatory disorders.

journal_name

Autophagy

journal_title

Autophagy

authors

Shen M,Jiang Y,Guan Z,Cao Y,Li L,Liu H,Sun SC

doi

10.1080/15548627.2017.1327941

subject

Has Abstract

pub_date

2017-08-03 00:00:00

pages

1364-1385

issue

8

eissn

1554-8627

issn

1554-8635

journal_volume

13

pub_type

杂志文章
  • Essential role for the ATG4B protease and autophagy in bleomycin-induced pulmonary fibrosis.

    abstract::Autophagy is a critical cellular homeostatic process that controls the turnover of damaged organelles and proteins. Impaired autophagic activity is involved in a number of diseases, including idiopathic pulmonary fibrosis suggesting that altered autophagy may contribute to fibrogenesis. However, the specific role of a...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2015.1034409

    authors: Cabrera S,Maciel M,Herrera I,Nava T,Vergara F,Gaxiola M,López-Otín C,Selman M,Pardo A

    更新日期:2015-04-03 00:00:00

  • Processing of autophagic protein LC3 by the 20S proteasome.

    abstract::Ubiquitin-proteasome system and autophagy are the two major mechanisms for protein degradation in eukaryotic cells. LC3, a ubiquitin-like protein, plays an essential role in autophagy through its ability to be conjugated to phosphatidylethanolamine. In this study, we discovered a novel LC3-processing activity, and bio...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6.1.10928

    authors: Gao Z,Gammoh N,Wong PM,Erdjument-Bromage H,Tempst P,Jiang X

    更新日期:2010-01-01 00:00:00

  • Heme and iron induce protein aggregation.

    abstract::Heme is an essential molecule expressed in many tissues where it plays key roles as the prosthetic group of several proteins involved in vital physiological and metabolic processes such as gas and electron transport. Structurally, heme is a tetrapyrrole ring containing an atom of iron (Fe) in its center. When released...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1271515

    authors: Travassos LH,Vasconcellos LR,Bozza MT,Carneiro LA

    更新日期:2017-03-04 00:00:00

  • Upregulation of SQSTM1/p62 contributes to nickel-induced malignant transformation of human bronchial epithelial cells.

    abstract::Chronic lung inflammation is accepted as being associated with the development of lung cancer caused by nickel exposure. Therefore, identifying the molecular mechanisms that lead to a nickel-induced sustained inflammatory microenvironment that causes transformation of human bronchial epithelial cells is of high signif...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1196313

    authors: Huang H,Zhu J,Li Y,Zhang L,Gu J,Xie Q,Jin H,Che X,Li J,Huang C,Chen LC,Lyu J,Gao J,Huang C

    更新日期:2016-10-02 00:00:00

  • Astrocytes promote progression of breast cancer metastases to the brain via a KISS1-mediated autophagy.

    abstract::Formation of metastases, also known as cancer dissemination, is an important stage of breast cancer (BrCa) development. KISS1 expression is associated with inhibition of metastases development. Recently we have demonstrated that BrCa metastases to the brain exhibit low levels of KISS1 expression at both mRNA and prote...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2017.1360466

    authors: Kaverina N,Borovjagin AV,Kadagidze Z,Baryshnikov A,Baryshnikova M,Malin D,Ghosh D,Shah N,Welch DR,Gabikian P,Karseladze A,Cobbs C,Ulasov IV

    更新日期:2017-01-01 00:00:00

  • SPHK1 (sphingosine kinase 1) induces epithelial-mesenchymal transition by promoting the autophagy-linked lysosomal degradation of CDH1/E-cadherin in hepatoma cells.

    abstract::SPHK1 (sphingosine kinase 1), a regulator of sphingolipid metabolites, plays a causal role in the development of hepatocellular carcinoma (HCC) through augmenting HCC invasion and metastasis. However, the mechanism by which SPHK1 signaling promotes invasion and metastasis in HCC remains to be clarified. Here, we repor...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2017.1291479

    authors: Liu H,Ma Y,He HW,Zhao WL,Shao RG

    更新日期:2017-05-04 00:00:00

  • Double duty of Atg9 self-association in autophagosome biogenesis.

    abstract::The understanding of the membrane flow process during autophagosome formation is essential to illuminate the role of autophagy under various disease-causing conditions. Atg9 is the only identified integral membrane protein required for autophagosome formation, and it is thought to cycle between the membrane sources an...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5.3.7699

    authors: He C,Baba M,Klionsky DJ

    更新日期:2009-04-01 00:00:00

  • Phagocytosis of cells dying through autophagy induces inflammasome activation and IL-1β release in human macrophages.

    abstract::Phagocytosis of naturally dying cells usually blocks inflammatory reactions in host cells. We have recently observed that clearance of cells dying through autophagy leads to a pro-inflammatory response in human macrophages. Investigating this response further, we found that during engulfment of MCF-7 or 293T cells und...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.7.3.14583

    authors: Petrovski G,Ayna G,Majai G,Hodrea J,Benko S,Mádi A,Fésüs L

    更新日期:2011-03-01 00:00:00

  • The glycolytic enzyme PFKFB3/phosphofructokinase regulates autophagy.

    abstract::T lymphocytes, the master regulators of immunity, have an unusual lifestyle. Equipped with a clonally distributed receptor they remain resting for long periods of time but go into overdrive when encountering antigen. Antigen recognition triggers an activation program that results in massive proliferation, differentiat...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.4161/auto.27345

    authors: Yang Z,Goronzy JJ,Weyand CM

    更新日期:2014-02-01 00:00:00

  • Phagocytosis of cells dying through autophagy evokes a pro-inflammatory response in macrophages.

    abstract::Autophagy as a natural part of cellular homeostasis usually takes place unnoticed by neighboring cells. However, its co-occurrence with cell death may contribute to the clearance of these dying cells by recruited phagocytes. Autophagy associated with programmed cell death has recently been reported to be essential for...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.4731

    authors: Petrovski G,Zahuczky G,Májai G,Fésüs L

    更新日期:2007-09-01 00:00:00

  • BNIP3L-dependent mitophagy accounts for mitochondrial clearance during 3 factors-induced somatic cell reprogramming.

    abstract::Induced pluripotent stem cells (iPSCs) have fewer and immature mitochondria than somatic cells and mainly rely on glycolysis for energy source. During somatic cell reprogramming, somatic mitochondria and other organelles get remodeled. However, events of organelle remodeling and interaction during somatic cell reprogr...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2017.1338545

    authors: Xiang G,Yang L,Long Q,Chen K,Tang H,Wu Y,Liu Z,Zhou Y,Qi J,Zheng L,Liu W,Ying Z,Fan W,Shi H,Li H,Lin X,Gao M,Liu J,Bao F,Li L,Duan L,Li M,Liu X

    更新日期:2017-09-02 00:00:00

  • Radiation-induced autophagy in normal and cancer cells: towards novel cytoprotection and radio-sensitization policies?

    abstract::Autophagy or Type II programmed cell death (PCD) is a major intracellular pathway for the degradation and recycling of proteins, ribosomes and entire organelles. The role of this pathway in the antitumor effect of radiotherapy and in radiation toxicity is obscure. A complicated machinery of genes and proteins is invol...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.4161/auto.5.4.7667

    authors: Zois CE,Koukourakis MI

    更新日期:2009-05-01 00:00:00

  • The yin and yang of autophagy in acute kidney injury.

    abstract::Antagonizing the strongly activated pathway of autophagy in renal ischemic injury has been associated with poor outcome. In our recent study we used mice with a selective deletion of Atg5 in the S3 proximal tubule segment, which is most susceptible to ischemic damage. In line with the notion that autophagy is a prosur...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2015.1135284

    authors: Melk A,Baisantry A,Schmitt R

    更新日期:2016-01-01 00:00:00

  • Mice deficient in the Vici syndrome gene Epg5 exhibit features of retinitis pigmentosa.

    abstract::Autophagy helps to maintain cellular homeostasis by removing misfolded proteins and damaged organelles, and generally acts as a cytoprotective mechanism for neuronal survival. Here we showed that mice deficient in the Vici syndrome gene Epg5, which is required for autophagosome maturation, show accumulation of ubiquit...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1238554

    authors: Miao G,Zhao YG,Zhao H,Ji C,Sun H,Chen Y,Zhang H

    更新日期:2016-12-01 00:00:00

  • Role of autophagy in the host defense against Toxoplasma gondii in astrocytes.

    abstract::Autophagy has recently been implicated in the host defense against the intracellular protozoan pathogen, Toxoplasma gondii, a major opportunistic pathogen of the central nervous system in immunosuppressed individuals. In both IFN gamma-activated macrophages and astrocytes, the p47 GTPases traffic to the T. gondii para...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5.2.7637

    authors: Halonen SK

    更新日期:2009-02-01 00:00:00

  • The Thr300Ala variant of ATG16L1 is associated with decreased risk of brain metastasis in patients with non-small cell lung cancer.

    abstract::Non-small cell lung cancer (NSCLC) often metastasizes to the brain, but identifying which patients will develop brain metastases (BM) is difficult. Macroautophagy/autophagy is critical for cancer initiation and progression. We hypothesized that genetic variants of autophagy-related genes may affect brain metastases (B...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2017.1308997

    authors: Li QX,Zhou X,Huang TT,Tang Y,Liu B,Peng P,Sun L,Wang YH,Yuan XL

    更新日期:2017-06-03 00:00:00

  • Dismantling the autophagic arsenal when it is time to die: concerted AMBRA1 degradation by caspases and calpains.

    abstract::Under stress conditions cells activate different response pathways which result in cell survival or apoptosis depending on: (1) the nature of the insults, (2) the type, if acute or chronic stress, and (3) how long the stress persists. Generally, autophagy is induced early to sustain cell survival and inhibit cell deat...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.20671

    authors: Corazzari M,Fimia GM,Piacentini M

    更新日期:2012-08-01 00:00:00

  • Autophagy proteins promote hepatitis C virus replication.

    abstract::Autophagy is a fundamental process for anti-viral defense. Not surprisingly, viruses have developed strategies to subvert or use autophagy for their own benefit. In cell culture, autophagy proteins are proviral factors that favor initiation of hepatitis C virus (HCV) infection. Autophagy proteins are required for tran...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5.8.10219

    authors: Dreux M,Chisari FV

    更新日期:2009-11-01 00:00:00

  • Autophagy modulates SNCA/α-synuclein release, thereby generating a hostile microenvironment.

    abstract::SNCA/α-synuclein aggregation plays a crucial role in synucleinopathies such as Parkinson disease and dementia with Lewy bodies. Aggregating and nonaggregating SNCA species are degraded by the autophagy-lysosomal pathway (ALP). Previously, we have shown that the ALP is not only responsible for SNCA degradation but is a...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.36436

    authors: Poehler AM,Xiang W,Spitzer P,May VE,Meixner H,Rockenstein E,Chutna O,Outeiro TF,Winkler J,Masliah E,Klucken J

    更新日期:2014-01-01 00:00:00

  • DJ-1 regulation of mitochondrial function and autophagy through oxidative stress.

    abstract::The dysregulation of mitochondrial function has been implicated in the pathogenesis of Parkinson disease. Mutations in the parkin, PINK1 and DJ-1 genes all result in recessive parkinsonism. Although the protein products of these genes have not been fully characterized, it has been established that all three contribute...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.7.5.14684

    authors: McCoy MK,Cookson MR

    更新日期:2011-05-01 00:00:00

  • Localized de novo phospholipid synthesis drives autophagosome biogenesis.

    abstract::During (macro)autophagy, cells form transient organelles, termed autophagosomes, to target a broad spectrum of substrates for degradation critical to cellular and organismal health. Driven by rapid membrane assembly, an initially small vesicle (phagophore) elongates into a large cup-shaped structure to engulf substrat...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2020.1725379

    authors: Schütter M,Graef M

    更新日期:2020-04-01 00:00:00

  • Rapamycin and Alzheimer disease: a double-edged sword?

    abstract::Numerous studies have reported that inhibition of MTOR (mechanistic target of rapamycin kinase) clearly reduces Alzheimer disease neuropathological hallmarks in mouse models. This has resulted in calls for the use of the MTOR inhibitor rapamycin for the treatment of dementia in humans. Unfortunately, intervention with...

    journal_title:Autophagy

    pub_type: 评论,杂志文章

    doi:10.1080/15548627.2019.1615823

    authors: Carosi JM,Sargeant TJ

    更新日期:2019-08-01 00:00:00

  • A second report from the EMBO conference on autophagy: mechanism, regulation and selectivity of autophagy.

    abstract::Some key questions being examined in the field of autophagy concern the origin of the membrane that forms the sequestering vesicle, the function of the related machinery, including the identification of new components and binding partners of previously identified autophagy-related proteins and the mechanism of autopha...

    journal_title:Autophagy

    pub_type:

    doi:10.4161/auto.6.1.10819

    authors: Vellai T,Klionsky DJ

    更新日期:2010-01-01 00:00:00

  • Autophagosome formation: Where the secretory and autophagy pathways meet.

    abstract::The upregulation of autophagosome formation in response to nutrient deprivation requires significant intracellular membrane rearrangements that are poorly understood. Recent findings have implicated COPII-coated vesicles, well known as ER-Golgi cargo transport carriers, as key players in macroautophagy. The role of CO...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.1080/15548627.2017.1287657

    authors: Wang J,Davis S,Zhu M,Miller EA,Ferro-Novick S

    更新日期:2017-05-04 00:00:00

  • Itraconazole suppresses the growth of glioblastoma through induction of autophagy: involvement of abnormal cholesterol trafficking.

    abstract::Glioblastoma is one of the most aggressive human cancers with poor prognosis, and therefore a critical need exists for novel therapeutic strategies for management of glioblastoma patients. Itraconazole, a traditional antifungal drug, has been identified as a novel potential anticancer agent due to its inhibitory effec...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.28912

    authors: Liu R,Li J,Zhang T,Zou L,Chen Y,Wang K,Lei Y,Yuan K,Li Y,Lan J,Cheng L,Xie N,Xiang R,Nice EC,Huang C,Wei Y

    更新日期:2014-07-01 00:00:00

  • Role of actin in shaping autophagosomes.

    abstract::One of the main unanswered questions regarding the early steps of macroautophagy/autophagy is the mechanism of membrane-modeling events required for autophagosome formation. Three independent studies have recently revealed an actin cytoskeleton involvement in this process, providing significant details regarding the r...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1236877

    authors: Zientara-Rytter K,Subramani S

    更新日期:2016-12-01 00:00:00

  • Lysosomal calcium regulates autophagy.

    abstract::Recent evidence has indicated that the lysosome is able to act as a signaling organelle that senses nutrient availability and generates an adaptive response that is important for cellular homeostasis. We recently discovered another example of lysosomal signaling where lysosomal calcium release activates the master aut...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.1080/15548627.2015.1047130

    authors: Medina DL,Ballabio A

    更新日期:2015-01-01 00:00:00

  • A sensitive and quantitative autolysosome probe for detecting autophagic activity in live and prestained fixed cells.

    abstract::Autophagy is a complex, multi-step and biologically important pathway mediated by autophagosomes and autolysosomes. Accurately dissecting and detecting different stages of autophagy is important to elucidate its molecular mechanism and thereby facilitate the discovery of pharmaceutical molecules. We herein reported a ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.24241

    authors: Chen JJ,Jing J,Chang H,Rong Y,Hai Y,Tang J,Zhang JL,Xu P

    更新日期:2013-06-01 00:00:00

  • Mir223 restrains autophagy and promotes CNS inflammation by targeting ATG16L1.

    abstract::Microglia are innate immune cells in the central nervous system (CNS), that supplies neurons with key factors for executing autophagosomal/lysosomal functions. Macroautophagy/autophagy is a cellular catabolic process that maintains cell balance in response to stress-related stimulation. Abnormal autophagy occurs with ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2018.1522467

    authors: Li Y,Zhou D,Ren Y,Zhang Z,Guo X,Ma M,Xue Z,Lv J,Liu H,Xi Q,Jia L,Zhang L,Liu Y,Zhang Q,Yan J,Da Y,Gao F,Yue J,Yao Z,Zhang R

    更新日期:2019-03-01 00:00:00

  • Autophagy, Inflammation, and Metabolism (AIM) Center in its second year.

    abstract::The NIH-funded center for autophagy research named Autophagy, Inflammation, and Metabolism (AIM) Center of Biomedical Research Excellence, located at the University of New Mexico Health Science Center is now completing its second year as a working center with a mission to promote autophagy research locally, nationally...

    journal_title:Autophagy

    pub_type: 历史文章,杂志文章

    doi:10.1080/15548627.2019.1634444

    authors: Deretic V,Prossnitz E,Burge M,Campen MJ,Cannon J,Liu KJ,Liu M,Hall P,Sklar LA,Allers L,Mariscal L,Garcia SA,Weaver J,Baehrecke EH,Behrends C,Cecconi F,Codogno P,Chen GC,Elazar Z,Eskelinen EL,Fourie B,Gozuacik D

    更新日期:2019-10-01 00:00:00