Autophagy, Inflammation, and Metabolism (AIM) Center in its second year.

Abstract:

:The NIH-funded center for autophagy research named Autophagy, Inflammation, and Metabolism (AIM) Center of Biomedical Research Excellence, located at the University of New Mexico Health Science Center is now completing its second year as a working center with a mission to promote autophagy research locally, nationally, and internationally. The center has thus far supported a cadre of 6 junior faculty (mentored PIs; mPIs) at a near-R01 level of funding. Two mPIs have graduated by obtaining their independent R01 funding and 3 of the remaining 4 have won significant funding from NIH in the form of R21 and R56 awards. The first year and a half of setting up the center has been punctuated by completion of renovations and acquisition and upgrades for equipment supporting autophagy, inflammation and metabolism studies. The scientific cores usage, and the growth of new studies is promoted through pilot grants and several types of enablement initiatives. The intent to cultivate AIM as a scholarly hub for autophagy and related studies is manifested in its Vibrant Campus Initiative, and the Tuesday AIM Seminar series, as well as by hosting a major scientific event, the 2019 AIM symposium, with nearly one third of the faculty from the International Council of Affiliate Members being present and leading sessions, giving talks, and conducting workshop activities. These and other events are often videostreamed for a worldwide scientific audience, and information about events at AIM and elsewhere are disseminated on Twitter and can be followed on the AIM web site. AIM intends to invigorate research on overlapping areas between autophagy, inflammation and metabolism with a number of new initiatives to promote metabolomic research. With the turnover of mPIs as they obtain their independent funding, new junior faculty are recruited and appointed as mPIs. All these activities are in keeping with AIM's intention to enable the next generation of autophagy researchers and help anchor, disseminate, and convey the depth and excitement of the autophagy field.

journal_name

Autophagy

journal_title

Autophagy

authors

Deretic V,Prossnitz E,Burge M,Campen MJ,Cannon J,Liu KJ,Liu M,Hall P,Sklar LA,Allers L,Mariscal L,Garcia SA,Weaver J,Baehrecke EH,Behrends C,Cecconi F,Codogno P,Chen GC,Elazar Z,Eskelinen EL,Fourie B,Gozuacik D

doi

10.1080/15548627.2019.1634444

subject

Has Abstract

pub_date

2019-10-01 00:00:00

pages

1829-1833

issue

10

eissn

1554-8627

issn

1554-8635

journal_volume

15

pub_type

历史文章,杂志文章
  • Jurassic PARK2: You eat your mitochondria, and you are what your mitochondria eat.

    abstract::Park2/Parkin is a central mediator of selective mitochondrial autophagy for mitochondrial quality control. We showed in mouse hearts that PINK1/Mfn2/Park2 mediated generalized mitophagy is essential to the normal perinatal transition from fetal mitochondria that prefer carbohydrates as metabolic substrates to adult fa...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1143210

    authors: Dorn GW 2nd

    更新日期:2016-01-01 00:00:00

  • Chaperone-mediated autophagy: the heretofore untold story of J. Fred "Paulo" Dice. Interview by Daniel J. Klionsky.

    abstract::The best-characterized process of autophagy is macroautophagy. Many an article or talk has started with the phrase "...macroautophagy, hereafter referred to as autophagy." This one will be different because we are going to learn more about the person most responsible for increasing our understanding of chaperone-media...

    journal_title:Autophagy

    pub_type: 传,历史文章,杂志文章

    doi:10.4161/auto.5.8.9476

    authors: Dice JF

    更新日期:2009-11-01 00:00:00

  • Donor MSCs release apoptotic bodies to improve myocardial infarction via autophagy regulation in recipient cells.

    abstract::Mesenchymal stem cell (MSC) transplantation has been widely applied as a potential therapeutic for multiple diseases. However, the underlying therapeutic mechanisms are not fully understood, especially the paradox between the low survival rate of transplanted cells and the beneficial therapeutic effects generated by t...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2020.1717128

    authors: Liu H,Liu S,Qiu X,Yang X,Bao L,Pu F,Liu X,Li C,Xuan K,Zhou J,Deng Z,Liu S,Jin Y

    更新日期:2020-12-01 00:00:00

  • HIF1A and NFAT5 coordinate Na+-boosted antibacterial defense via enhanced autophagy and autolysosomal targeting.

    abstract::Infection and inflammation are able to induce diet-independent Na+-accumulation without commensurate water retention in afflicted tissues, which favors the pro-inflammatory activation of mouse macrophages and augments their antibacterial and antiparasitic activity. While Na+-boosted host defense against the protozoan ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2019.1596483

    authors: Neubert P,Weichselbaum A,Reitinger C,Schatz V,Schröder A,Ferdinand JR,Simon M,Bär AL,Brochhausen C,Gerlach RG,Tomiuk S,Hammer K,Wagner S,van Zandbergen G,Binger KJ,Müller DN,Kitada K,Clatworthy MR,Kurts C,Titze J,

    更新日期:2019-11-01 00:00:00

  • Unconventional autophagy mediated by the WD40 domain of ATG16L1 is derailed by the T300A Crohn disease risk polymorphism.

    abstract::A coding polymorphism of the critical autophagic effector ATG16L1 (T300A) increases the risk of Crohn disease, but how this mutation influences the function of ATG16L1 has remained unclear. In a recent report, we showed that the A300 allele alters the ability of the C-terminal WD40 domain of ATG16L1 to interact with p...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1216303

    authors: Serramito-Gómez I,Boada-Romero E,Pimentel-Muiños FX

    更新日期:2016-11-01 00:00:00

  • The interplay between PRKCI/PKCλ/ι, SQSTM1/p62, and autophagy orchestrates the oxidative metabolic response that drives liver cancer.

    abstract::Hepatocellular carcinoma (HCC) is the consequence of chronic liver damage caused by the excessive generation of reactive oxygen species (ROS). To mitigate the deleterious effects of ROS, cells activate the transcription factor NFE2L2/NRF2, which is constitutively degraded through its partner KEAP1. The inactivation of...

    journal_title:Autophagy

    pub_type: 评论,杂志文章

    doi:10.1080/15548627.2020.1797290

    authors: Moscat J,Diaz-Meco MT

    更新日期:2020-10-01 00:00:00

  • The two faces of autophagy: Coxiella and Mycobacterium.

    abstract::In the world of pathogen-host cell interactions, the autophagic pathway has been recently described as a component of the innate immune response against intracellular microorganisms. Indeed, some bacterial survival mechanisms are hampered when this process is activated. Mycobacterium tuberculosis infection of macropha...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.4161/auto.2827

    authors: Colombo MI,Gutierrez MG,Romano PS

    更新日期:2006-07-01 00:00:00

  • Nuclear membrane-derived autophagy, a novel process that participates in the presentation of endogenous viral antigens during HSV-1 infection.

    abstract::Complex membrane trafficking events are involved in the regulation of antigen processing and presentation of both endogenous and exogenous antigens. While these processes were believed to involve mainly organelles along the endo/phagocytic and the biosynthetic pathways, recent studies have shown that autophagy also pa...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5.7.9163

    authors: English L,Chemali M,Desjardins M

    更新日期:2009-10-01 00:00:00

  • TARDBP/TDP-43 regulates autophagy in both MTORC1-dependent and MTORC1-independent manners.

    abstract::In a recent paper we addressed the mechanism by which defective autophagy contributes to TARDBP/TDP-43-mediated neurodegenerative disorders. We demonstrated that TARDBP regulates MTORC1-TFEB signaling by targeting RPTOR/raptor, a key component and an adaptor protein of MTORC1. Loss of TARDBP decreased the mRNA stabili...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1151596

    authors: Ying Z,Xia Q,Hao Z,Xu D,Wang M,Wang H,Wang G

    更新日期:2016-01-01 00:00:00

  • KSHV reduces autophagy in THP-1 cells and in differentiating monocytes by decreasing CAST/calpastatin and ATG5 expression.

    abstract::We have previously shown that Kaposi sarcoma-associated herpesvirus (KSHV) impairs monocyte differentiation into dendritic cells (DCs). Macroautophagy/autophagy has been reported to be essential in such a differentiating process. Here we extended these studies and found that the impairment of DC formation by KSHV occu...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1235122

    authors: Santarelli R,Granato M,Pentassuglia G,Lacconi V,Gilardini Montani MS,Gonnella R,Tafani M,Torrisi MR,Faggioni A,Cirone M

    更新日期:2016-12-01 00:00:00

  • Anti-neoplastic activity of the cytosolic FoxO1 results from autophagic cell death.

    abstract::Although Beclin 1 and mTOR are considered to be the main molecules to modulate the autophagic process, searching for other autophagy-regulating molecules is still an ongoing challenge to scientists. Here we demonstrated that FoxO1, a forkhead O family protein, is a mediator of autophagy. Upon oxidative stress or serum...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6.7.13289

    authors: Zhao Y,Wang L,Yang J,Zhang P,Ma K,Zhou J,Liao W,Zhu WG

    更新日期:2010-10-01 00:00:00

  • Essential control of mitochondrial morphology and function by chaperone-mediated autophagy through degradation of PARK7.

    abstract::As a selective degradation system, chaperone-mediated autophagy (CMA) is essential for maintaining cellular homeostasis and survival under stress conditions. Increasing evidence points to an important role for the dysfunction of CMA in the pathogenesis of Parkinson disease (PD). However, the mechanisms by which CMA re...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1179401

    authors: Wang B,Cai Z,Tao K,Zeng W,Lu F,Yang R,Feng D,Gao G,Yang Q

    更新日期:2016-08-02 00:00:00

  • Vitamin D improves sunburns by increasing autophagy in M2 macrophages.

    abstract::Cutaneous inflammation from UV radiation exposure causes epidermal damage, cellular infiltration, and secretion of pro-inflammatory mediators that exacerbate tissue destruction. Recovery is mediated chiefly by anti-inflammatory M2 macrophages that suppress inflammation and augment epidermal regeneration. Vitamin D ena...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2019.1569298

    authors: Das LM,Binko AM,Traylor ZP,Peng H,Lu KQ

    更新日期:2019-05-01 00:00:00

  • Autophagy contributes to regulation of nuclear dynamics during vegetative growth and hyphal fusion in Fusarium oxysporum.

    abstract::In the fungal pathogen Fusarium oxysporum, vegetative hyphal fusion triggers nuclear mitotic division in the invading hypha followed by migration of a nucleus into the receptor hypha and degradation of the resident nucleus. Here we examined the role of autophagy in fusion-induced nuclear degradation. A search of the F...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/15548627.2014.994413

    authors: Corral-Ramos C,Roca MG,Di Pietro A,Roncero MI,Ruiz-Roldán C

    更新日期:2015-01-01 00:00:00

  • Implications of autophagy in anthrax pathogenicity.

    abstract::The etiological agent for anthrax is Bacillus anthracis, which produces lethal toxin (LT) that exerts a myriad of effects on many immune cells. In our previous study, it was demonstrated that LT and protective antigen (PA) induce autophagy in mammalian cells. Preliminary results suggest that autophagy may function as ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5.5.8567

    authors: Tan YK,Vu HA,Kusuma CM,Wu A

    更新日期:2009-07-01 00:00:00

  • Beyond autophagy: the role of UVRAG in membrane trafficking.

    abstract::Autophagy is a lysosome-directed membrane trafficking event for the degradation of cytoplasmic components, including organelles. The past few years have seen a great advance in our understanding of the cellular machinery of autophagosome biogenesis, the hallmark of autophagy. However, our global understanding of autop...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6496

    authors: Liang C,Sir D,Lee S,Ou JH,Jung JU

    更新日期:2008-08-01 00:00:00

  • Regulation of autophagy by extracellular matrix glycoproteins in HeLa cells.

    abstract::Macroautophagy is a major lysosomal degradation pathway for cellular components in eukaryotic cells. Baseline macroautophagy is important for quality control of the cytoplasm in order to avoid the accumulation of cytotoxic products. Its stimulation by various stressful situations, including nutrient starvation, is imp...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.7.1.13851

    authors: Tuloup-Minguez V,Greffard A,Codogno P,Botti J

    更新日期:2011-01-01 00:00:00

  • Macroautophagy-dependent, intralysosomal cleavage of a betaine homocysteine methyltransferase fusion protein requires stable multimerization.

    abstract::Cargo-based assays have proven invaluable in the study of macroautophagy in yeast and mammalian cells. Proteomic analysis of autolysosomes identified the metabolic enzyme, betaine homocysteine methyltransferase (BHMT), as a potential cargo-based, end-point marker for mammalian macroautophagy. To test whether degradati...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5275

    authors: Mercer CA,Kaliappan A,Dennis PB

    更新日期:2008-02-01 00:00:00

  • The roles of intrinsic disorder-based liquid-liquid phase transitions in the "Dr. Jekyll-Mr. Hyde" behavior of proteins involved in amyotrophic lateral sclerosis and frontotemporal lobar degeneration.

    abstract::Pathological developments leading to amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are associated with misbehavior of several key proteins, such as SOD1 (superoxide dismutase 1), TARDBP/TDP-43, FUS, C9orf72, and dipeptide repeat proteins generated as a result of the translation of th...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.1080/15548627.2017.1384889

    authors: Uversky VN

    更新日期:2017-01-01 00:00:00

  • The induction of autophagy by mechanical stress.

    abstract::The ability to respond and adapt to changes in the physical environment is a universal and essential cellular property. Here we demonstrated that cells respond to mechanical compressive stress by rapidly inducing autophagosome formation. We measured this response in both Dictyostelium and mammalian cells, indicating t...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.7.12.17924

    authors: King JS,Veltman DM,Insall RH

    更新日期:2011-12-01 00:00:00

  • Modification of BECN1 by ISG15 plays a crucial role in autophagy regulation by type I IFN/interferon.

    abstract::ISG15 (ISG15 ubiquitin-like modifier), a ubiquitin-like protein, is one of the major type I IFN (interferon) effector systems. ISG15 can be conjugated to target proteins (ISGylation) via the stepwise action of E1, E2, and E3 enzymes. Conjugated ISG15 can be removed (deISGylated) from target proteins by USP18 (ubiquiti...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2015.1023982

    authors: Xu D,Zhang T,Xiao J,Zhu K,Wei R,Wu Z,Meng H,Li Y,Yuan J

    更新日期:2015-04-03 00:00:00

  • The ULK1 complex: sensing nutrient signals for autophagy activation.

    abstract::The Atg1/ULK1 complex plays a central role in starvation-induced autophagy, integrating signals from upstream sensors such as MTOR and AMPK and transducing them to the downstream autophagy pathway. Much progress has been made in the last few years in understanding the mechanisms by which the complex is regulated throu...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.4161/auto.23323

    authors: Wong PM,Puente C,Ganley IG,Jiang X

    更新日期:2013-02-01 00:00:00

  • Phagocytosis of cells dying through autophagy evokes a pro-inflammatory response in macrophages.

    abstract::Autophagy as a natural part of cellular homeostasis usually takes place unnoticed by neighboring cells. However, its co-occurrence with cell death may contribute to the clearance of these dying cells by recruited phagocytes. Autophagy associated with programmed cell death has recently been reported to be essential for...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.4731

    authors: Petrovski G,Zahuczky G,Májai G,Fésüs L

    更新日期:2007-09-01 00:00:00

  • A histone point mutation that switches on autophagy.

    abstract::The multifaceted process of aging inevitably leads to disturbances in cellular metabolism and protein homeostasis. To meet this challenge, cells make use of autophagy, which is probably one of the most important pathways preserving cellular protection under stressful conditions. Thus, efficient autophagic flux is requ...

    journal_title:Autophagy

    pub_type: 评论,杂志文章

    doi:10.4161/auto.28767

    authors: Eisenberg T,Schroeder S,Büttner S,Carmona-Gutierrez D,Pendl T,Andryushkova A,Mariño G,Pietrocola F,Harger A,Zimmermann A,Magnes C,Sinner F,Sedej S,Pieber TR,Dengjel J,Sigrist S,Kroemer G,Madeo F

    更新日期:2014-06-01 00:00:00

  • MTOR inhibition attenuates DNA damage and apoptosis through autophagy-mediated suppression of CREB1.

    abstract::Hyperactivation of mechanistic target of rapamycin (MTOR) is a common feature of human cancers, and MTOR inhibitors, such as rapamycin, are thus becoming therapeutics in targeting certain cancers. However, rapamycin has also been found to compromise the efficacy of chemotherapeutics to cells with hyperactive MTOR. Her...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.26447

    authors: Wang Y,Hu Z,Liu Z,Chen R,Peng H,Guo J,Chen X,Zhang H

    更新日期:2013-12-01 00:00:00

  • Mitochondrial quality control mediated by PINK1 and PRKN: links to iron metabolism and tumor immunity.

    abstract::Mitochondrial quality control is an essential process required to maintain cellular homeostasis and functions. Mutations of PINK1 and PRKN/PARK2 contribute to the risk of Parkinson disease. Our recent findings indicate that depletion of Pink1 and Prkn promotes pancreatic tumorigenesis in KRAS-driven engineered mouse m...

    journal_title:Autophagy

    pub_type: 评论,杂志文章

    doi:10.1080/15548627.2018.1526611

    authors: Kang R,Xie Y,Zeh HJ,Klionsky DJ,Tang D

    更新日期:2019-01-01 00:00:00

  • Essential role for the ATG4B protease and autophagy in bleomycin-induced pulmonary fibrosis.

    abstract::Autophagy is a critical cellular homeostatic process that controls the turnover of damaged organelles and proteins. Impaired autophagic activity is involved in a number of diseases, including idiopathic pulmonary fibrosis suggesting that altered autophagy may contribute to fibrogenesis. However, the specific role of a...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2015.1034409

    authors: Cabrera S,Maciel M,Herrera I,Nava T,Vergara F,Gaxiola M,López-Otín C,Selman M,Pardo A

    更新日期:2015-04-03 00:00:00

  • Autophagy proteins promote hepatitis C virus replication.

    abstract::Autophagy is a fundamental process for anti-viral defense. Not surprisingly, viruses have developed strategies to subvert or use autophagy for their own benefit. In cell culture, autophagy proteins are proviral factors that favor initiation of hepatitis C virus (HCV) infection. Autophagy proteins are required for tran...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5.8.10219

    authors: Dreux M,Chisari FV

    更新日期:2009-11-01 00:00:00

  • Upregulation of SQSTM1/p62 contributes to nickel-induced malignant transformation of human bronchial epithelial cells.

    abstract::Chronic lung inflammation is accepted as being associated with the development of lung cancer caused by nickel exposure. Therefore, identifying the molecular mechanisms that lead to a nickel-induced sustained inflammatory microenvironment that causes transformation of human bronchial epithelial cells is of high signif...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1196313

    authors: Huang H,Zhu J,Li Y,Zhang L,Gu J,Xie Q,Jin H,Che X,Li J,Huang C,Chen LC,Lyu J,Gao J,Huang C

    更新日期:2016-10-02 00:00:00

  • SYK regulates macrophage MHC-II expression via activation of autophagy in response to oxidized LDL.

    abstract::Adaptive immunity, which plays an important role in the development of atherosclerosis, is mediated by major histocompatibility complex (MHC)-dependent antigen presentation. In atherosclerotic lesions, macrophages constitute an important class of antigen-presenting cells that activate adaptive immune responses to oxid...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2015.1037061

    authors: Choi SH,Gonen A,Diehl CJ,Kim J,Almazan F,Witztum JL,Miller YI

    更新日期:2015-01-01 00:00:00