Facilitated ethanol metabolism promotes cardiomyocyte contractile dysfunction through autophagy in murine hearts.

Abstract:

:Chronic drinking leads to myocardial contractile dysfunction where ethanol metabolism plays an essential role. Acetaldehyde, the main ethanol metabolite, mediates alcohol-induced cell injury although the underlying mechanism is still elusive. This study was designed to examine the mechanism involved in accelerated ethanol metabolism-induced cardiac defect with a focus on autophagy. Wild-type FVB and cardiac-specific overexpression of alcohol dehydrogenase mice were placed on a 4% nutrition-balanced alcohol diet for 8 weeks. Myocardial histology, immunohistochemistry, autophagy markers and signal molecules were examined. Expression of micro RNA miR-30a, a potential target of Beclin 1, was evaluated by real-time PCR. Chronic alcohol intake led to cardiac acetaldehyde accumulation, hypertrophy and overt autophagosome accumulation (LC3-II and Atg7), the effect of which was accentuated by ADH. Signaling molecules governing autophagy initiation including class III PtdIns3K, phosphorylation of mTOR and p70S6K were enhanced and dampened, respectively, following alcohol intake. These alcohol-induced signaling responses were augmented by ADH. ADH accentuated or unmasked alcohol-induced downregulation of Bcl-2, Bcl-xL and MiR-30a. Interestingly, ADH aggravated alcohol-induced p62 accumulation. Autophagy inhibition using 3-MA abolished alcohol-induced cardiomyocyte contractile anomalies. Moreover, acetaldehyde led to cardiomyocyte contractile dysfunction and autophagy induction, which was ablated by 3-MA. Ethanol or acetaldehyde increased GFP-LC3 puncta in H9c2 cells, the effect of which was ablated by 3-MA but unaffected by lysosomal inhibition using bafilomycin A(1), E64D and pepstatin A. In summary, these data suggested that facilitated acetaldehyde production via ADH following alcohol intake triggered cardiac autophagosome formation along with impaired lysosomal degradation, en route to myocardial defect.

journal_name

Autophagy

journal_title

Autophagy

authors

Guo R,Hu N,Kandadi MR,Ren J

doi

10.4161/auto.18997

subject

Has Abstract

pub_date

2012-04-01 00:00:00

pages

593-608

issue

4

eissn

1554-8627

issn

1554-8635

pii

18997

journal_volume

8

pub_type

杂志文章
  • SPHK1 (sphingosine kinase 1) induces epithelial-mesenchymal transition by promoting the autophagy-linked lysosomal degradation of CDH1/E-cadherin in hepatoma cells.

    abstract::SPHK1 (sphingosine kinase 1), a regulator of sphingolipid metabolites, plays a causal role in the development of hepatocellular carcinoma (HCC) through augmenting HCC invasion and metastasis. However, the mechanism by which SPHK1 signaling promotes invasion and metastasis in HCC remains to be clarified. Here, we repor...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2017.1291479

    authors: Liu H,Ma Y,He HW,Zhao WL,Shao RG

    更新日期:2017-05-04 00:00:00

  • ER-phagy: selective autophagy of the endoplasmic reticulum.

    abstract::Throughout their life, cells must maintain homeostasis while facing constantly fluctuating demands on their different organelles. A major mechanism for the homeostatic control of organelle function is the unfolded protein response (UPR), a signaling pathway that triggers a comprehensive remodeling of the endoplasmic r...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.3930

    authors: Bernales S,Schuck S,Walter P

    更新日期:2007-05-01 00:00:00

  • The PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations.

    abstract::Mitochondrial dysfunction is an early sign of many neurodegenerative diseases. Very recently, two Parkinson disease (PD) associated genes, PINK1 and Parkin, were shown to mediate the degradation of damaged mitochondria via selective autophagy (mitophagy). PINK1 kinase activity is needed for prompt and efficient Parkin...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6.7.13286

    authors: Geisler S,Holmström KM,Treis A,Skujat D,Weber SS,Fiesel FC,Kahle PJ,Springer W

    更新日期:2010-10-01 00:00:00

  • Processing of proteins in autophagy vesicles of antigen-presenting cells generates citrullinated peptides recognized by the immune system.

    abstract::Our laboratory has been investigating for some time the nature of the response of T lymphocytes in autoimmunity in the reactions against self-proteins that result in a number of diseases, such as type 1 diabetes, multiple sclerosis, rheumatoid arthritis (RA) and others. T cells recognize peptides generated from protei...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.19261

    authors: Ireland JM,Unanue ER

    更新日期:2012-03-01 00:00:00

  • microRNA 30A promotes autophagy in response to cancer therapy.

    abstract::microRNAs (miRNAs) are a class of small regulatory RNAs that regulate gene expression at the post-transcriptional level. miRNAs play important roles in the regulation of development, growth, and metastasis of cancer, and in determining the response of tumor cells to anticancer therapy. In recent years, they have also ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.20053

    authors: Yu Y,Cao L,Yang L,Kang R,Lotze M,Tang D

    更新日期:2012-05-01 00:00:00

  • Spread of neuronal degeneration in a dopaminergic, Lrrk-G2019S model of Parkinson disease.

    abstract::Flies expressing the most common Parkinson disease (PD)-related mutation, LRRK2-G2019S, in their dopaminergic neurons show loss of visual function and degeneration of the retina, including mitochondrial abnormalities, apoptosis and autophagy. Since the photoreceptors that degenerate are not dopaminergic, this demonstr...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.24397

    authors: Hindle SJ,Elliott CJ

    更新日期:2013-06-01 00:00:00

  • A role for TOR complex 2 signaling in promoting autophagy.

    abstract::The conserved target of rapamycin (TOR) kinase is a central regulator of cell growth in response to nutrient availability. TOR forms 2 structurally and functionally distinct complexes, TORC1 and TORC2, and negatively regulates autophagy via TORC1. Here we demonstrate TOR also operates independently through the TORC2 s...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.36262

    authors: Vlahakis A,Powers T

    更新日期:2014-01-01 00:00:00

  • AMPK connects energy stress to PIK3C3/VPS34 regulation.

    abstract::The class III phosphatidylinositol (PtdIns)-3 kinase, PIK3C3/VPS34, forms multiple complexes and regulates a variety of cellular functions, especially in intracellular vesicle trafficking and autophagy. Even though PtdIns3P, the product of PIK3C3, is thought to be a critical membrane marker for the autophagosome, it i...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.24877

    authors: Kim J,Guan KL

    更新日期:2013-07-01 00:00:00

  • Spermidine-triggered autophagy ameliorates memory during aging.

    abstract::The aging process drives the progressive deterioration of an organism and is thus subject to a complex interplay of regulatory and executing mechanisms. Our understanding of this process eventually aims at the delay and/or prevention of age-related pathologies, among them the age-dependent decrease in cognitive perfor...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.26918

    authors: Sigrist SJ,Carmona-Gutierrez D,Gupta VK,Bhukel A,Mertel S,Eisenberg T,Madeo F

    更新日期:2014-01-01 00:00:00

  • Macromusophagy: A solo piano musical representation of macroautophagy.

    abstract::Macroautophagy is a complex process involving dynamic membrane rearrangements in which parts of the cytoplasm are sequestered within double-membrane phagophores. Upon completion, these structures mature into autophagosomes that fuse with the yeast vacuole or mammalian lysosome, leading to degradation of the cargo and ...

    journal_title:Autophagy

    pub_type: 社论

    doi:10.4161/auto.27965

    authors: Lee WW,Klionsky DJ

    更新日期:2014-05-01 00:00:00

  • Painting a picture of autophagy in Drosophila.

    abstract::Drawing as a way of understanding things better/easier is in human nature, from textbook images through the models and graphical abstracts published in scientific papers to chalk talks during the academic job interview process. As a molecular cell biologist and geneticist, I always find it easier to show a microscopy ...

    journal_title:Autophagy

    pub_type: 评论,社论

    doi:10.1080/15548627.2019.1659624

    authors: Juhász G

    更新日期:2019-11-01 00:00:00

  • Mitochondrial fission facilitates mitophagy in Saccharomyces cerevisiae.

    abstract::As a highly dynamic organelle, mitochondria undergo constitutive fusion and fission as well as biogenesis and degradation. Mitophagy, selective mitochondrial degradation through autophagy, is a conserved cellular process used for the elimination of excessive and damaged mitochondria in eukaryotes. Despite the signific...

    journal_title:Autophagy

    pub_type: 评论,杂志文章

    doi:10.4161/auto.25804

    authors: Mao K,Klionsky DJ

    更新日期:2013-11-01 00:00:00

  • Secretory autophagy holds the key to lysozyme secretion during bacterial infection of the intestine.

    abstract::In 2013, Dr. Lora Hooper and colleagues described the induction of antibacterial macroautophagy/autophagy in intestinal epithelial cells as a cytoprotective host defense mechanism against invading Salmonella enterica serovar Typhimurium (S. Typhimurium). Canonical autophagy functions in a primarily degradative capacit...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.1080/15548627.2017.1401425

    authors: Delorme-Axford E,Klionsky DJ

    更新日期:2018-01-01 00:00:00

  • Autophagic degradation of SQSTM1 inhibits ovarian cancer motility by decreasing DICER1 and AGO2 to induce MIRLET7A-3P.

    abstract::The relationship between macroautophagy/autophagy and miRNA in regulating cancer cell motility is not clearly delineated. Here, we found that induction of BECN1-dependent or -independent autophagy decreased ubiquitin-binding proteins SQSTM1/p62 and CALCOCO2/NDP52. Downregulation of SQSTM1 (but not CALCOCO2) led to a d...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2018.1501135

    authors: Liao CC,Ho MY,Liang SM,Liang CM

    更新日期:2018-01-01 00:00:00

  • ATM loss disrupts the autophagy-lysosomal pathway.

    abstract::ATM (ataxia telangiectasia mutated) protein is found associated with multiple organelles including synaptic vesicles, endosomes and lysosomes, often in cooperation with ATR (ataxia telangiectasia and Rad3 related). Mutation of the ATM gene results in ataxia-telangiectasia (A-T), an autosomal recessive disorder with de...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2020.1805860

    authors: Cheng A,Tse KH,Chow HM,Gan Y,Song X,Ma F,Qian YXY,She W,Herrup K

    更新日期:2020-08-14 00:00:00

  • Autophagy fosters myofibroblast differentiation through MTORC2 activation and downstream upregulation of CTGF.

    abstract::Recent evidence suggests that autophagy may favor fibrosis through enhanced differentiation of fibroblasts in myofibroblasts. Here, we sought to characterize the mediators and signaling pathways implicated in autophagy-induced myofibroblast differentiation. Fibroblasts, serum starved for up to 4 d, showed increased LC...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/15548627.2014.981786

    authors: Bernard M,Dieudé M,Yang B,Hamelin K,Underwood K,Hébert MJ

    更新日期:2014-01-01 00:00:00

  • C9orf72 and smcr8 mutant mice reveal MTORC1 activation due to impaired lysosomal degradation and exocytosis.

    abstract::How lysosome and MTORC1 signaling interact remains elusive in terminally differentiated cells. A G4C2 repeat expansion in C9orf72 is the most common cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9ALS-FTD). We previously identified a C9orf72-SMCR8-containing complex. Here we ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2019.1703353

    authors: Shao Q,Yang M,Liang C,Ma L,Zhang W,Jiang Z,Luo J,Lee JK,Liang C,Chen JF

    更新日期:2020-09-01 00:00:00

  • Exploiting cell death pathways by an E. coli cytotoxin: autophagy as a double-edged sword for the host.

    abstract::Cytotoxic necrotizing factor 1 is a bacterial protein toxin from Escherichia coli that is able to activate the Rho GTPases and to hinder apoptosis and mitotic catastrophe. Upon exposure to toxin, cells undergo a complex framework of changes, including cytoskeleton remodeling and multinucleation. These cells also show ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.2965

    authors: Fiorentini C,Malorni W

    更新日期:2006-10-01 00:00:00

  • Inhibitory effect of intracellular lipid load on macroautophagy.

    abstract::Degradation of intracellular components via macroautophagy is a complex multistep process that starts with the sequestration of cytosolic cargo in a de novo formed double-membrane vesicle or autophagosome. This compartment acquires the hydrolases required for cargo digestion by fusion with lysosomes. In contrast to th...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1096/fj.09-144519

    authors: Koga H,Kaushik S,Cuervo AM

    更新日期:2010-08-01 00:00:00

  • Purification of autophagosomes from rat hepatocytes.

    abstract::To facilitate the purification of rat liver autophagosomes, isolated rat hepatocytes are first incubated for 2 h at 37°C with vinblastine, which induces autophagosome accumulation by blocking the fusion of these organelles with endosomes and lysosomes. The hepatocytes are then electrodisrupted and homogenized, and the...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6.4.11272

    authors: Seglen PO,Brinchmann MF

    更新日期:2010-05-01 00:00:00

  • Autophagy as a mechanism of antiviral defense at the maternal-fetal interface.

    abstract::Mechanisms to protect against viral infections are crucial during pregnancy as maternal-fetal transmission can have serious pathological outcomes, including fetal infection and its sequelae, such as growth restriction, birth defects, and/or fetal death. The trophoblast forms the interface between the feto-placental un...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.26558

    authors: Delorme-Axford E,Bayer A,Sadovsky Y,Coyne CB

    更新日期:2013-12-01 00:00:00

  • Cell-autonomous, paracrine and neuroendocrine feedback regulation of autophagy by DBI/ACBP (diazepam binding inhibitor, acyl-CoA binding protein): the obesity factor.

    abstract::DBI/ACBP (diazepam binding protein, acyl-CoA binding protein) participates in the regulation of fatty acid metabolism when it is localized within cells, whereas outside of cells it acts as a diazepam-binding protein. Recent results indicate that many different mammalian cell types release DBI/ACBP upon in vitro or in ...

    journal_title:Autophagy

    pub_type: 评论,杂志文章

    doi:10.1080/15548627.2019.1662585

    authors: Bravo-San Pedro JM,Sica V,Martins I,Anagnostopoulos G,Maiuri C,Kroemer G

    更新日期:2019-11-01 00:00:00

  • The PI 3-kinase regulator Vps15 is required for autophagic clearance of protein aggregates.

    abstract::Autophagy is involved in cellular clearance of aggregate-prone proteins, thereby having a cytoprotective function. Studies in yeast have shown that the PI 3-kinase Vps34 and its regulatory protein kinase Vps15 are important for autophagy, but the possible involvement of these proteins in autophagy in a multicellular a...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5829

    authors: Lindmo K,Brech A,Finley KD,Gaumer S,Contamine D,Rusten TE,Stenmark H

    更新日期:2008-05-01 00:00:00

  • In vivo imaging of autophagy in a mouse stroke model.

    abstract::Recent studies have suggested that autophagy is involved in a neural death pathway following cerebral ischemia. In vivo detection of autophagy could be important for evaluating ischemic neural cell damage for human stroke patients. Using novel green fluorescent protein (GFP)-fused microtubule-associated protein 1 ligh...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6.8.13427

    authors: Tian F,Deguchi K,Yamashita T,Ohta Y,Morimoto N,Shang J,Zhang X,Liu N,Ikeda Y,Matsuura T,Abe K

    更新日期:2010-11-01 00:00:00

  • Mice deficient in the Vici syndrome gene Epg5 exhibit features of retinitis pigmentosa.

    abstract::Autophagy helps to maintain cellular homeostasis by removing misfolded proteins and damaged organelles, and generally acts as a cytoprotective mechanism for neuronal survival. Here we showed that mice deficient in the Vici syndrome gene Epg5, which is required for autophagosome maturation, show accumulation of ubiquit...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1238554

    authors: Miao G,Zhao YG,Zhao H,Ji C,Sun H,Chen Y,Zhang H

    更新日期:2016-12-01 00:00:00

  • Longevity-relevant regulation of autophagy at the level of the acetylproteome.

    abstract::The acetylase inhibitor, spermidine and the deacetylase activator, resveratrol, both induce autophagy and prolong life span of the model organism Caenorhabditis elegans in an autophagydependent fashion. Based on these premises, we investigated the differences and similarities in spermidine and resveratrol-induced auto...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.7.6.15191

    authors: Mariño G,Morselli E,Bennetzen MV,Eisenberg T,Megalou E,Schroeder S,Cabrera S,Bénit P,Rustin P,Criollo A,Kepp O,Galluzzi L,Shen S,Malik SA,Maiuri MC,Horio Y,López-Otín C,Andersen JS,Tavernarakis N,Madeo F,Kroemer G

    更新日期:2011-06-01 00:00:00

  • Autophagy alleviates hypoxia-induced blood-brain barrier injury via regulation of CLDN5 (claudin 5).

    abstract::Blood-brain barrier (BBB) disruption is a key event in triggering secondary damage to the central nervous system (CNS) under stroke, and is frequently associated with abnormal macroautophagy/autophagy in brain microvascular endothelial cells (BMECs). However, the underlying mechanism of autophagy in maintaining BBB in...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2020.1851897

    authors: Yang Z,Lin P,Chen B,Zhang X,Xiao W,Wu S,Huang C,Feng D,Zhang W,Zhang J

    更新日期:2020-12-07 00:00:00

  • Mutant HTT (huntingtin) impairs mitophagy in a cellular model of Huntington disease.

    abstract::The precise degradation of dysfunctional mitochondria by mitophagy is essential for maintaining neuronal homeostasis. HTT (huntingtin) can interact with numerous other proteins and thereby perform multiple biological functions within the cell. In this study, we investigated the role of HTT during mitophagy and analyze...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2020.1728096

    authors: Franco-Iborra S,Plaza-Zabala A,Montpeyo M,Sebastian D,Vila M,Martinez-Vicente M

    更新日期:2020-02-24 00:00:00

  • Sorting, recognition and activation of the misfolded protein degradation pathways through macroautophagy and the proteasome.

    abstract::Based on a functional categorization, proteins may be grouped into three types and sorted to either the proteasome or the macroautophagy pathway for degradation. The two pathways are mechanistically connected but their capacity seems different. Macroautophagy can degrade all forms of misfolded proteins whereas proteas...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.4161/auto.5190

    authors: Ding WX,Yin XM

    更新日期:2008-02-01 00:00:00

  • Atg9 cycles between mitochondria and the pre-autophagosomal structure in yeasts.

    abstract::Autophagy is a degradative process conserved among eukaryotic cells. It allows the elimination of cytoplasm including aberrant protein aggregates and damaged organelles. Accordingly, it is implicated in normal developmental processes and also serves a protective role in tumor suppression and elimination of invading pa...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.1.2.1840

    authors: Reggiori F,Shintani T,Nair U,Klionsky DJ

    更新日期:2005-07-01 00:00:00