Cell patterning through inkjet printing of one cell per droplet.

Abstract:

:The inkjet ejection technology used in printers has been adopted and research has been conducted on manufacturing artificial tissue by patterning cells through micronozzle ejection of small droplets containing multiple cells. However, stable injection of cells has proven difficult, owing to the frequent occurrence of nozzle clogging. In this paper, a piezoelectric inkjet head constructed with a glass capillary that enabled viewing of the nozzle section was developed, the movement of cells ejected from the nozzle tip was analyzed, and a method for stably ejecting cells was verified. A pull-push ejection method was compared with a push-pull ejection method regarding the voltage waveform applied to the piezoelectric element of the head. The push-pull method was found to be more suitable for stable ejection. Further, ejection of one cell per droplet was realized by detecting the position of the cell in the nozzle section and utilizing these position data. Thus, a method for more precise patterning of viable cells at desired position and number was established. This method is very useful and promising not only for biofabrication, 3D tissue construction, cell printing, but also for a number of biomedical application, such as bioMEMS, lab on a chip research field.

journal_name

Biofabrication

journal_title

Biofabrication

authors

Yamaguchi S,Ueno A,Akiyama Y,Morishima K

doi

10.1088/1758-5082/4/4/045005

subject

Has Abstract

pub_date

2012-12-01 00:00:00

pages

045005

issue

4

eissn

1758-5082

issn

1758-5090

journal_volume

4

pub_type

杂志文章
  • Biofabrication of neural microphysiological systems using magnetic spheroid bioprinting.

    abstract::The high attrition rate of neuro-pharmaceuticals as they proceed to market necessitates the development of clinically-relevant in vitro neural microphysiological systems that can be utilized during the preclinical screening phase to assess the safety and efficacy of potential compounds. Historically, proposed models h...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab41b4

    authors: Bowser DA,Moore MJ

    更新日期:2019-10-21 00:00:00

  • Engineering three-dimensional cell mechanical microenvironment with hydrogels.

    abstract::Cell mechanical microenvironment (CMM) significantly affects cell behaviors such as spreading, migration, proliferation and differentiation. However, most studies on cell response to mechanical stimulation are based on two-dimensional (2D) planar substrates, which cannot mimic native three-dimensional (3D) CMM. Accumu...

    journal_title:Biofabrication

    pub_type: 杂志文章,评审

    doi:10.1088/1758-5082/4/4/042001

    authors: Huang G,Wang L,Wang S,Han Y,Wu J,Zhang Q,Xu F,Lu TJ

    更新日期:2012-12-01 00:00:00

  • 3D bioprinting of scaffolds with living Schwann cells for potential nerve tissue engineering applications.

    abstract::Three-dimensional bioprinting of biomaterials shows great potential for producing cell-encapsulated scaffolds to repair nerves after injury or disease. For this, preparation of biomaterials and bioprinting itself are critical to create scaffolds with both biological and mechanical properties appropriate for nerve rege...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aacd30

    authors: Ning L,Sun H,Lelong T,Guilloteau R,Zhu N,Schreyer DJ,Chen X

    更新日期:2018-06-29 00:00:00

  • Fabrication of three-dimensional bioplotted hydrogel scaffolds for islets of Langerhans transplantation.

    abstract::In clinical islet transplantation, allogeneic islets of Langerhans are transplanted into the portal vein of patients with type 1 diabetes, enabling the restoration of normoglycemia. After intra-hepatic transplantation several factors are involved in the decay in islet mass and function mainly caused by an immediate bl...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/7/2/025009

    authors: Marchioli G,van Gurp L,van Krieken PP,Stamatialis D,Engelse M,van Blitterswijk CA,Karperien MB,de Koning E,Alblas J,Moroni L,van Apeldoorn AA

    更新日期:2015-05-28 00:00:00

  • Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks.

    abstract::Bioprinting of living cells is rapidly developing as an advanced biofabrication approach to engineer tissues. Bioinks can be extruded in three-dimensions (3D) to fabricate complex and hierarchical constructs for implantation. However, a lack of functionality can often be attributed to poor bioink properties. Indeed, a...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab19fd

    authors: Cidonio G,Alcala-Orozco CR,Lim KS,Glinka M,Mutreja I,Kim YH,Dawson JI,Woodfield TBF,Oreffo ROC

    更新日期:2019-06-12 00:00:00

  • A simple method for producing multiple copies of controlled release small molecule microarrays for cell-based screening.

    abstract::Traditional drug discovery involves the screening of lead compounds from a chemical library by using cell-based high throughput screening (HTS) procedures. This has created a demand for the development of cell-based microarray chips for HTS of compounds. Although several cell-based microarray devices and procedures fo...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/9/1/011001

    authors: Fujita S,Onuki-Nagasaki R,Ikuta K,Hara Y

    更新日期:2016-12-05 00:00:00

  • Development of TRACER: tissue roll for analysis of cellular environment and response.

    abstract::The tumour microenvironment is heterogeneous and consists of multiple cell types, variable extracellular matrix (ECM) composition, and contains cell-defined gradients of small molecules, oxygen, nutrients and waste. Emerging in vitro cell culture systems that attempt to replicate these features often fail to incorpora...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/8/4/045008

    authors: Rodenhizer D,Cojocari D,Wouters BG,McGuigan AP

    更新日期:2016-10-18 00:00:00

  • In situ modification of cell-culture scaffolds by photocatalytic decomposition of organosilane monolayers.

    abstract::We demonstrate a novel application of TiO2 photocatalysis for modifying the cell affinity of a scaffold surface in a cell-culture environment. An as-deposited octadecyltrichlorosilane self-assembled monolayer (OTS SAM) on TiO2 was found to be hydrophobic and stably adsorbed serum albumins that blocked subsequent adsor...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/6/3/035021

    authors: Yamamoto H,Demura T,Morita M,Kono S,Sekine K,Shinada T,Nakamura S,Tanii T

    更新日期:2014-09-01 00:00:00

  • Optimizing the biofabrication process of omentum-based scaffolds for engineering autologous tissues.

    abstract::Omentum-based matrices fabricated by decellularization have the potential to serve as autologous scaffolds for tissue engineering. Transplantation of such scaffolds prepared from the patient's own biomaterial may reduce the immunogenic response after transplantation. Recently we reported on the potential of the decell...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/6/3/035023

    authors: Soffer-Tsur N,Shevach M,Shapira A,Peer D,Dvir T

    更新日期:2014-09-01 00:00:00

  • A functionally gradient variational porosity architecture for hollowed scaffolds fabrication.

    abstract::This paper presents a novel continuous tool-path planning methodology for hollowed scaffold fabrication in tissue engineering. A new functionally gradient porous architecture is proposed with a continuous material deposition planning scheme. A controllable variational pore size and hence the porosity have been achieve...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/3/3/034106

    authors: Khoda AK,Ozbolat IT,Koc B

    更新日期:2011-09-01 00:00:00

  • Fabrication of omentum-based matrix for engineering vascularized cardiac tissues.

    abstract::Fabricating three-dimensional, biocompatible microenvironments to support functional tissue assembly remains a key challenge in cardiac tissue engineering. We hypothesized that since the omentum can be removed from patients by minimally invasive procedures, the obtained underlying matrices can be manipulated to serve ...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/6/2/024101

    authors: Shevach M,Soffer-Tsur N,Fleischer S,Shapira A,Dvir T

    更新日期:2014-06-01 00:00:00

  • Green bioprinting: extrusion-based fabrication of plant cell-laden biopolymer hydrogel scaffolds.

    abstract::Plant cell cultures produce active agents for pharmaceuticals, food and cosmetics. However, up to now process control for plant cell suspension cultures is challenging. A positive impact of cell immobilization, such as encapsulation in hydrogel beads, on secondary metabolites production has been reported for several p...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa8854

    authors: Seidel J,Ahlfeld T,Adolph M,Kümmritz S,Steingroewer J,Krujatz F,Bley T,Gelinsky M,Lode A

    更新日期:2017-11-14 00:00:00

  • Design of 3D printed insert for hanging culture of Caco-2 cells.

    abstract::A Caco-2 cell culture on Transwell, an alternative testing to animal or human testing used in evaluating drug intestinal permeability, incorrectly estimated the absorption of actively transported drugs due to the low expression of membrane transporters. Similarly, three-dimensional (3D) cultures of Caco-2 cells, which...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/7/1/015003

    authors: Shen C,Meng Q,Zhang G

    更新日期:2014-12-17 00:00:00

  • Free-floating epithelial micro-tissue arrays: a low cost and versatile technique.

    abstract::Three-dimensional (3D) tissue models are invaluable tools that can closely reflect the in vivo physiological environment. However, they are usually difficult to develop, have a low throughput and are often costly; limiting their utility to most laboratories. The recent availability of inexpensive additive manufacturin...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/8/4/045006

    authors: Flood P,Alvarez L,Reynaud EG

    更新日期:2016-10-11 00:00:00

  • Three-dimensional tissues using human pluripotent stem cell spheroids as biofabrication building blocks.

    abstract::A recently emerged approach for tissue engineering is to biofabricate tissues using cellular spheroids as building blocks. Human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), can be cultured to generate large numbers of cells and can presumably...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa663b

    authors: Lin H,Li Q,Lei Y

    更新日期:2017-04-24 00:00:00

  • Cell-laden four-dimensional bioprinting using near-infrared-triggered shape-morphing alginate/polydopamine bioinks.

    abstract::Four-dimensional (4D) bioprinting of cell-laden constructs with programmable shape-morphing structures has gained increasing attention in the field of biofabrication and tissue engineering. Currently, most of the widely used materials for 4D printing, including N-isopropylacrylamide-based polymers, are not commonly us...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab39c5

    authors: Luo Y,Lin X,Chen B,Wei X

    更新日期:2019-09-13 00:00:00

  • On chip purification of hiPSC-derived cardiomyocytes using a fishnet-like microstructure.

    abstract::Human induced pluripotent stem cells (hiPSCs) can be differentiated at high efficiency into cells of a targeting type but the resulting cell population has to be of high purity for clinical therapies to avoid teratomas. Herein, we report a microfluidic device with integrated and surface functionalised fishnet-like str...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/8/3/035017

    authors: Li X,Yu L,Li J,Minami I,Nakajima M,Noda Y,Kotera H,Liu L,Chen Y

    更新日期:2016-09-08 00:00:00

  • Homogeneous hydroxyapatite/alginate composite hydrogel promotes calcified cartilage matrix deposition with potential for three-dimensional bioprinting.

    abstract::Calcified cartilage regeneration plays an important role in successful osteochondral repair, since it provides a biological and mechanical transition from the unmineralized cartilage at the articulating surface to the underlying mineralized bone. To biomimic native calcified cartilage in engineered constructs, here we...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aaf44a

    authors: You F,Chen X,Cooper DML,Chang T,Eames BF

    更新日期:2018-12-27 00:00:00

  • A composite hydrogel-3D printed thermoplast osteochondral anchor as example for a zonal approach to cartilage repair: in vivo performance in a long-term equine model.

    abstract::Recent research has been focusing on the generation of living personalized osteochondral constructs for joint repair. Native articular cartilage has a zonal structure, which is not reflected in current constructs and which may be a cause of the frequent failure of these repair attempts. Therefore, we investigated the ...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab94ce

    authors: Mancini IAD,Schmidt S,Brommer H,Pouran B,Schäfer S,Tessmar J,Mensinga A,van Rijen MHP,Groll J,Blunk T,Levato R,Malda J,van Weeren PR

    更新日期:2020-07-01 00:00:00

  • Complex, multi-scale small intestinal topography replicated in cellular growth substrates fabricated via chemical vapor deposition of Parylene C.

    abstract::Native small intestine possesses distinct multi-scale structures (e.g., crypts, villi) not included in traditional 2D intestinal culture models for drug delivery and regenerative medicine. The known impact of structure on cell function motivates exploration of the influence of intestinal topography on the phenotype of...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/8/3/035011

    authors: Koppes AN,Kamath M,Pfluger CA,Burkey DD,Dokmeci M,Wang L,Carrier RL

    更新日期:2016-08-22 00:00:00

  • Reliable inkjet printing of chondrocytes and MSCs using reservoir agitation.

    abstract::Drop-on-demand (DoD) inkjet printing has been explored for a range of applications, including those to selectively deposit cellular material, due to the high accuracy and scalability of such systems when compared with alternative bioprinting techniques. Despite this, there remain considerable limitations when handling...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aba2f8

    authors: Dudman JPR,Ferreira AM,Gentile P,Wang X,Ribeiro RDC,Benning M,Dalgarno KW

    更新日期:2020-08-12 00:00:00

  • Direct extrusion of individually encapsulated endothelial and smooth muscle cells mimicking blood vessel structures and vascular native cell alignment.

    abstract::Cardiovascular diseases (CVDs) are considered the principal cause of worldwide death, being atherosclerosis the main etiology. Up to now, the predominant treatment for CVDs has been bypass surgery from autologous source. However, due to previous harvest or the type of disease, this is not always an option. For this re...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/abbd27

    authors: Bosch Rué E,Delgado LM,Gil FJ,Perez RA

    更新日期:2020-09-30 00:00:00

  • Neural priming of adipose-derived stem cells by cell-imprinted substrates.

    abstract::Cell-imprinting technology is a novel method for directing stem cell fate using substrates molded from target cells. Here, we fabricated and studied cell-imprinted substrates for neural priming in human adipose-derived stem cells in the absence of chemical cues. We molded polydimethylsiloxane (PDMS) silicone substrate...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/abc66f

    authors: Ghazali ZS,Eskandari M,Bonakdar S,Renaud P,Mashinchian O,Shalileh S,Bonini F,Uckay I,Preynat-Seauve O,Braschler T

    更新日期:2020-10-30 00:00:00

  • Digital fabrication of multi-material biomedical objects.

    abstract::This paper describes a multi-material virtual prototyping (MMVP) system for modelling and digital fabrication of discrete and functionally graded multi-material objects for biomedical applications. The MMVP system consists of a DMMVP module, an FGMVP module and a virtual reality (VR) simulation module. The DMMVP modul...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/1/4/045001

    authors: Cheung HH,Choi SH

    更新日期:2009-12-01 00:00:00

  • 3D printing of step-gradient nanocomposite hydrogels for controlled cell migration.

    abstract::In this study, we report the step-gradient nanocomposite (NC) hydrogel generated easily by spatial connection of different nanocomposite hydrogel pastes varying in the concentrations of nanomaterials with the aid of a 3D printing technique. The prepared 3D printed gradient NC hydrogel has self-adhesive properties and ...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab3582

    authors: Motealleh A,Çelebi-Saltik B,Ermis N,Nowak S,Khademhosseini A,Kehr NS

    更新日期:2019-08-22 00:00:00

  • Selective hydrophilic modification of Parylene C films: a new approach to cell micro-patterning for synthetic biology applications.

    abstract::We demonstrate a simple, accurate and versatile method to manipulate Parylene C, a material widely known for its high biocompatibility, and transform it to a substrate that can effectively control the cellular microenvironment and consequently affect the morphology and function of the cells in vitro. The Parylene C sc...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/6/2/025004

    authors: Trantidou T,Rao C,Barrett H,Camelliti P,Pinto K,Yacoub MH,Athanasiou T,Toumazou C,Terracciano CM,Prodromakis T

    更新日期:2014-06-01 00:00:00

  • Surface modification of electrospun fibre meshes by oxygen plasma for bone regeneration.

    abstract::Plasma treatment is a method to modify the physicochemical properties of biomaterials, which consequently may affect interactions with cells. Based on the rationale that physical cues on the surface of culture substrates and implants, such as surface roughness, have proven to alter cell behaviour, we used electrospinn...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/5/1/015006

    authors: Nandakumar A,Tahmasebi Birgani Z,Santos D,Mentink A,Auffermann N,van der Werf K,Bennink M,Moroni L,van Blitterswijk C,Habibovic P

    更新日期:2013-03-01 00:00:00

  • Printability study of metal ion crosslinked PEG-catechol based inks.

    abstract::In this paper we explore the printability of reversible networks formed by catechol functionalized PEG solutions and metal cations (Al3+, Fe3+ or V3+). The printability and shape fidelity were dependent on the ink composition (metal ion type, pH, PEG molecular weight) and printing parameters (extrusion pressure and pr...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab673a

    authors: Włodarczyk-Biegun MK,Paez JI,Villiou M,Feng J,Del Campo A

    更新日期:2020-04-29 00:00:00

  • Enhancing cell packing in buckyballs by acoustofluidic activation.

    abstract::How to pack materials into well-defined volumes efficiently has been a longstanding question of interest to physicists, material scientists, and mathematicians as these materials have broad applications ranging from shipping goods in commerce to seeds in agriculture and to spheroids in tissue engineering. How many mar...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab76d9

    authors: Ren T,Steiger W,Chen P,Ovsianikov A,Demirci U

    更新日期:2020-03-31 00:00:00

  • Importance of endogenous extracellular matrix in biomechanical properties of human skin model.

    abstract::The physical and mechanical properties of cells modulate their behavior such proliferation rate, migration and extracellular matrix remodeling. In order to study cell behavior in a tissue-like environment in vitro, it is of utmost importance to develop biologically and physically relevant 3D cell models. Here, we char...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa6ed5

    authors: Pillet F,Gibot L,Madi M,Rols MP,Dague E

    更新日期:2017-05-11 00:00:00