On chip purification of hiPSC-derived cardiomyocytes using a fishnet-like microstructure.

Abstract:

:Human induced pluripotent stem cells (hiPSCs) can be differentiated at high efficiency into cells of a targeting type but the resulting cell population has to be of high purity for clinical therapies to avoid teratomas. Herein, we report a microfluidic device with integrated and surface functionalised fishnet-like structures for specific cell capture. With the help of a flow derivation surface pattern, cells in solution are forced to cross the fishnet-like structure, resulting in high efficiency and selective retention of a chosen cell population. A suspension of hiPSCs and hiPSC-derived cardiomyocytes were used for device function validation. We found that a hiPSC capture rate over 80% can be achieved along with a remarkable increase in the CM population rate in the recovered suspension without affecting cell viability.

journal_name

Biofabrication

journal_title

Biofabrication

authors

Li X,Yu L,Li J,Minami I,Nakajima M,Noda Y,Kotera H,Liu L,Chen Y

doi

10.1088/1758-5090/8/3/035017

subject

Has Abstract

pub_date

2016-09-08 00:00:00

pages

035017

issue

3

eissn

1758-5082

issn

1758-5090

journal_volume

8

pub_type

杂志文章
  • Custom-tailored tissue engineered polycaprolactone scaffolds for total disc replacement.

    abstract::Degeneration of the intervertebral disc (IVD) represents a significant musculoskeletal disease burden. Tissue engineering has proposed several strategies comprising the use of biodegradable materials to prepare scaffolds that can present mechanical properties similar to those of native IVD tissues. However, this might...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/7/1/015008

    authors: van Uden S,Silva-Correia J,Correlo VM,Oliveira JM,Reis RL

    更新日期:2015-01-21 00:00:00

  • Enhancing cell packing in buckyballs by acoustofluidic activation.

    abstract::How to pack materials into well-defined volumes efficiently has been a longstanding question of interest to physicists, material scientists, and mathematicians as these materials have broad applications ranging from shipping goods in commerce to seeds in agriculture and to spheroids in tissue engineering. How many mar...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab76d9

    authors: Ren T,Steiger W,Chen P,Ovsianikov A,Demirci U

    更新日期:2020-03-31 00:00:00

  • The fabrication and cell culture of three-dimensional rolled scaffolds with complex micro-architectures.

    abstract::Cell cultures for tissue engineering are traditionally prepared on two-dimensional or three-dimensional scaffolds with simple pores; however, this limits mass transportation, which is necessary for cell viability and function. In this paper, an innovative method is proposed for fabricating porous scaffolds with design...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/4/1/015004

    authors: Liu Y,Li X,Qu X,Zhu L,He J,Zhao Q,Wu W,Li D

    更新日期:2012-03-01 00:00:00

  • A simple method for producing multiple copies of controlled release small molecule microarrays for cell-based screening.

    abstract::Traditional drug discovery involves the screening of lead compounds from a chemical library by using cell-based high throughput screening (HTS) procedures. This has created a demand for the development of cell-based microarray chips for HTS of compounds. Although several cell-based microarray devices and procedures fo...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/9/1/011001

    authors: Fujita S,Onuki-Nagasaki R,Ikuta K,Hara Y

    更新日期:2016-12-05 00:00:00

  • Reliable inkjet printing of chondrocytes and MSCs using reservoir agitation.

    abstract::Drop-on-demand (DoD) inkjet printing has been explored for a range of applications, including those to selectively deposit cellular material, due to the high accuracy and scalability of such systems when compared with alternative bioprinting techniques. Despite this, there remain considerable limitations when handling...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aba2f8

    authors: Dudman JPR,Ferreira AM,Gentile P,Wang X,Ribeiro RDC,Benning M,Dalgarno KW

    更新日期:2020-08-12 00:00:00

  • The bio-gripper: a fluid-driven micro-manipulator of living tissue constructs for additive bio-manufacturing.

    abstract::We previously developed the Bio-Pick, Place, and Perfuse (Bio-P3) instrument to fabricate large perfusable tissue constructs by stacking and aligning scaffold-free living microtissues with integrated lumens. The Bio-P3 required an actuating mechanism to manipulate living microtissues of various sizes and shapes that a...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/8/2/025015

    authors: Ip BC,Cui F,Tripathi A,Morgan JR

    更新日期:2016-05-25 00:00:00

  • Engineered tissue micro-rings fabricated from aggregated fibroblasts and microfibres for a bottom-up tissue engineering approach.

    abstract::Tissue rings with incorporated microscaffolds have been engineered as promising building blocks for constructing biological tubes from the bottom up. However, the microscaffolds available for incorporation are very limited at present. In this paper we provide an efficient strategy to first incorporate microfluidic spu...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab1ee5

    authors: Sun T,Shi Q,Yao Y,Sun J,Wang H,Huang Q,Fukuda T

    更新日期:2019-06-25 00:00:00

  • Integrating self-assembly and biofabrication for the development of structures with enhanced complexity and hierarchical control.

    abstract::Nature has evolved to grow and regenerate tissues and organs using self-assembling processes capable of organizing a wide variety of molecular building-blocks at multiple size scales. As the field of biofabrication progresses, it is essential to develop innovative ways that can enhance our capacity to build more compl...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab84cb

    authors: Hedegaard CL,Mata A

    更新日期:2020-06-01 00:00:00

  • An in vitro vascular chip using 3D printing-enabled hydrogel casting.

    abstract::An important unsolved challenge in tissue engineering has been the inability to replicate the geometry and function of vascular networks and blood vessels. Here, we engineer a user-defined 3D microfluidic vascular channel using 3D printing-enabled hydrogel casting. First, a hollow L-shaped channel is developed using a...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/8/3/035015

    authors: Yang L,Shridhar SV,Gerwitz M,Soman P

    更新日期:2016-08-26 00:00:00

  • Cell-laden four-dimensional bioprinting using near-infrared-triggered shape-morphing alginate/polydopamine bioinks.

    abstract::Four-dimensional (4D) bioprinting of cell-laden constructs with programmable shape-morphing structures has gained increasing attention in the field of biofabrication and tissue engineering. Currently, most of the widely used materials for 4D printing, including N-isopropylacrylamide-based polymers, are not commonly us...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab39c5

    authors: Luo Y,Lin X,Chen B,Wei X

    更新日期:2019-09-13 00:00:00

  • Trapping cell spheroids and organoids using digital acoustofluidics.

    abstract::The precise positioning and arrangement of cell spheroids and organoids are critical to reconstructing complex tissue architecture for tissue engineering and regenerative medicine. Here, we present a digital acoustofluidic method to manipulate cell spheroids and organoids with unprecedented dexterity. By introducing l...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab9582

    authors: Cai H,Wu Z,Ao Z,Nunez A,Chen B,Jiang L,Bondesson M,Guo F

    更新日期:2020-07-01 00:00:00

  • Three-dimensional culture of epidermal cells on ordered cellulose scaffolds.

    abstract::An ordered cellulose film scaffold, termed a nematic ordered cellulose (NOC) template, had unique surface properties and successfully induced the establishment of a three-dimensional (3D), hierarchical structure of epidermal cells by cell attachment and subsequent culture. Initially, the scaffold surface properties we...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/5/2/025010

    authors: Seyama T,Suh EY,Kondo T

    更新日期:2013-06-01 00:00:00

  • Three-dimensional inkjet biofabrication based on designed images.

    abstract::Tissue engineering has been developed with the ultimate aim of manufacturing human organs, but success has been limited to only thin tissues and tissues with no significant structures. In order to construct more complicated tissues, we have developed a three-dimensional (3D) fabrication technology in which 3D structur...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/3/3/034113

    authors: Arai K,Iwanaga S,Toda H,Genci C,Nishiyama Y,Nakamura M

    更新日期:2011-09-01 00:00:00

  • Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering.

    abstract::Here we developed a composite scaffold of pearl/poly(lactic-co-glycolic acid) (pearl/PLGA) utilizing the low-temperature deposition manufacturing (LDM). LDM makes it possible to fabricate scaffolds with designed microstructure and macrostructure, while keeping the bioactivity of biomaterials by working at a low temper...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/2/2/025002

    authors: Xu M,Li Y,Suo H,Yan Y,Liu L,Wang Q,Ge Y,Xu Y

    更新日期:2010-06-01 00:00:00

  • Process- and bio-inspired hydrogels for 3D bioprinting of soft free-standing neural and glial tissues.

    abstract::A bio-inspired hydrogel for 3D bioprinting of soft free-standing neural tissues is presented. The novel filler-free bioinks were designed by combining natural polymers for extracellular matrix biomimicry with synthetic polymers to endow desirable rheological properties for 3D bioprinting. Crosslinking of thiolated Plu...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab02c9

    authors: Haring AP,Thompson EG,Tong Y,Laheri S,Cesewski E,Sontheimer H,Johnson BN

    更新日期:2019-02-25 00:00:00

  • Importance of endogenous extracellular matrix in biomechanical properties of human skin model.

    abstract::The physical and mechanical properties of cells modulate their behavior such proliferation rate, migration and extracellular matrix remodeling. In order to study cell behavior in a tissue-like environment in vitro, it is of utmost importance to develop biologically and physically relevant 3D cell models. Here, we char...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa6ed5

    authors: Pillet F,Gibot L,Madi M,Rols MP,Dague E

    更新日期:2017-05-11 00:00:00

  • Biofabrication of neural microphysiological systems using magnetic spheroid bioprinting.

    abstract::The high attrition rate of neuro-pharmaceuticals as they proceed to market necessitates the development of clinically-relevant in vitro neural microphysiological systems that can be utilized during the preclinical screening phase to assess the safety and efficacy of potential compounds. Historically, proposed models h...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab41b4

    authors: Bowser DA,Moore MJ

    更新日期:2019-10-21 00:00:00

  • A composite hydrogel-3D printed thermoplast osteochondral anchor as example for a zonal approach to cartilage repair: in vivo performance in a long-term equine model.

    abstract::Recent research has been focusing on the generation of living personalized osteochondral constructs for joint repair. Native articular cartilage has a zonal structure, which is not reflected in current constructs and which may be a cause of the frequent failure of these repair attempts. Therefore, we investigated the ...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab94ce

    authors: Mancini IAD,Schmidt S,Brommer H,Pouran B,Schäfer S,Tessmar J,Mensinga A,van Rijen MHP,Groll J,Blunk T,Levato R,Malda J,van Weeren PR

    更新日期:2020-07-01 00:00:00

  • Cell adhesion pattern created by OSTE polymers.

    abstract::Engineering surfaces with functional polymers is a crucial issue in the field of micro/nanofabrication and cell-material interface studies. For many applications of surface patterning, it does not need cells to attach on the whole surface. Herein, we introduce a novel polymer fabrication protocol of off-stoichiometry ...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa669c

    authors: Liu W,Li Y,Ding X

    更新日期:2017-04-24 00:00:00

  • Towards 4D printed scaffolds for tissue engineering: exploiting 3D shape memory polymers to deliver time-controlled stimulus on cultured cells.

    abstract::Tissue engineering needs innovative solutions to better fit the requirements of a minimally invasive approach, providing at the same time instructive cues to cells. The use of shape memory polyurethane has been investigated by producing 4D scaffolds via additive manufacturing technology. Scaffolds with two different p...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa8114

    authors: Hendrikson WJ,Rouwkema J,Clementi F,van Blitterswijk CA,Farè S,Moroni L

    更新日期:2017-08-02 00:00:00

  • In vitro and in vivo angiogenic capacity of BM-MSCs/HUVECs and AT-MSCs/HUVECs cocultures.

    abstract::The aim of this study was to comparatively evaluate the angiogenic capacity of cocultures using either human bone marrow- or human adipose tissue-derived mesenchymal stem cells (MSCs) (BM- or AT-MSCs) with human umbilical vein endothelial cells (HUVECs) both in vitro and in vivo at early time points (i.e. days 3 and 7...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/6/1/015005

    authors: Ma J,Yang F,Both SK,Prins HJ,Helder MN,Pan J,Cui FZ,Jansen JA,van den Beucken JJ

    更新日期:2014-03-01 00:00:00

  • Free-floating epithelial micro-tissue arrays: a low cost and versatile technique.

    abstract::Three-dimensional (3D) tissue models are invaluable tools that can closely reflect the in vivo physiological environment. However, they are usually difficult to develop, have a low throughput and are often costly; limiting their utility to most laboratories. The recent availability of inexpensive additive manufacturin...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/8/4/045006

    authors: Flood P,Alvarez L,Reynaud EG

    更新日期:2016-10-11 00:00:00

  • Influence of patterned topographic features on the formation of cardiac cell clusters and their rhythmic activities.

    abstract::In conventional primary cultures, cardiac cells prepared from a newborn rat undergo spontaneous formation of cell clusters after several days. These cell clusters may be non-homogeneously distributed on a flat surface and show irregular beating which can be recorded by calcium ion imaging. In order to improve the cell...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/5/3/035013

    authors: Wang L,Liu L,Magome N,Agladze K,Chen Y

    更新日期:2013-09-01 00:00:00

  • Cell patterning through inkjet printing of one cell per droplet.

    abstract::The inkjet ejection technology used in printers has been adopted and research has been conducted on manufacturing artificial tissue by patterning cells through micronozzle ejection of small droplets containing multiple cells. However, stable injection of cells has proven difficult, owing to the frequent occurrence of ...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/4/4/045005

    authors: Yamaguchi S,Ueno A,Akiyama Y,Morishima K

    更新日期:2012-12-01 00:00:00

  • Direct printing of patterned three-dimensional ultrafine fibrous scaffolds by stable jet electrospinning for cellular ingrowth.

    abstract::Electrospinning has been widely used to produce ultrafine fibers in microscale and nanoscale; however, traditional electrospinning processes are currently beset by troublesome limitations in fabrication of 3D periodic porous structures because of the chaotic nature of the electrospinning jet. Here we report a novel st...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/7/4/045004

    authors: Yuan H,Zhou Q,Li B,Bao M,Lou X,Zhang Y

    更新日期:2015-11-05 00:00:00

  • 4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials.

    abstract::Four-dimensional (4D) bioprinting, encompassing a wide range of disciplines including bioengineering, materials science, chemistry, and computer sciences, is emerging as the next-generation biofabrication technology. By utilizing stimuli-responsive materials and advanced three-dimensional (3D) bioprinting strategies, ...

    journal_title:Biofabrication

    pub_type: 杂志文章,评审

    doi:10.1088/1758-5090/9/1/012001

    authors: Li YC,Zhang YS,Akpek A,Shin SR,Khademhosseini A

    更新日期:2016-12-02 00:00:00

  • A tailored three-dimensionally printable agarose-collagen blend allows encapsulation, spreading, and attachment of human umbilical artery smooth muscle cells.

    abstract::In recent years, novel biofabrication technologies have enabled the rapid manufacture of hydrogel-cell suspensions into tissue-imitating constructs. The development of novel materials for biofabrication still remains a challenge due to a gap between contradicting requirements such as three-dimensional printability and...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/8/2/025011

    authors: Köpf M,Campos DF,Blaeser A,Sen KS,Fischer H

    更新日期:2016-05-20 00:00:00

  • Assembling of electrospun meshes into three-dimensional porous scaffolds for bone repair.

    abstract::Technical limitations of traditional electrospinning make it hard to produce three-dimensional (3D) scaffolds with hierarchical pore structures. Here, porous polycaprolactone (PCL) nanofiber meshes with different nano-hydroxyapatite (nHA) concentrations were prepared by electrospinning with stainless steel mesh as the...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa5c99

    authors: Song J,Zhu G,Wang L,An G,Shi X,Wang Y

    更新日期:2017-02-14 00:00:00

  • Laser-direct writing by two-photon polymerization of 3D honeycomb-like structures for bone regeneration.

    abstract::A major limitation of existing 3D implantable structures for bone tissue engineering is that most of the cells rapidly attach on the outer edges of the structure, restricting the cells penetration into the inner parts and causing the formation of a necrotic core. Furthermore, these structures generally possess a rando...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aaa718

    authors: Paun IA,Popescu RC,Mustaciosu CC,Zamfirescu M,Calin BS,Mihailescu M,Dinescu M,Popescu A,Chioibasu D,Soproniy M,Luculescu CR

    更新日期:2018-02-05 00:00:00

  • In situ modification of cell-culture scaffolds by photocatalytic decomposition of organosilane monolayers.

    abstract::We demonstrate a novel application of TiO2 photocatalysis for modifying the cell affinity of a scaffold surface in a cell-culture environment. An as-deposited octadecyltrichlorosilane self-assembled monolayer (OTS SAM) on TiO2 was found to be hydrophobic and stably adsorbed serum albumins that blocked subsequent adsor...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/6/3/035021

    authors: Yamamoto H,Demura T,Morita M,Kono S,Sekine K,Shinada T,Nakamura S,Tanii T

    更新日期:2014-09-01 00:00:00