Complex, multi-scale small intestinal topography replicated in cellular growth substrates fabricated via chemical vapor deposition of Parylene C.

Abstract:

:Native small intestine possesses distinct multi-scale structures (e.g., crypts, villi) not included in traditional 2D intestinal culture models for drug delivery and regenerative medicine. The known impact of structure on cell function motivates exploration of the influence of intestinal topography on the phenotype of cultured epithelial cells, but the irregular, macro- to submicron-scale features of native intestine are challenging to precisely replicate in cellular growth substrates. Herein, we utilized chemical vapor deposition of Parylene C on decellularized porcine small intestine to create polymeric intestinal replicas containing biomimetic irregular, multi-scale structures. These replicas were used as molds for polydimethylsiloxane (PDMS) growth substrates with macro to submicron intestinal topographical features. Resultant PDMS replicas exhibit multiscale resolution including macro- to micro-scale folds, crypt and villus structures, and submicron-scale features of the underlying basement membrane. After 10 d of human epithelial colorectal cell culture on PDMS substrates, the inclusion of biomimetic topographical features enhanced alkaline phosphatase expression 2.3-fold compared to flat controls, suggesting biomimetic topography is important in induced epithelial differentiation. This work presents a facile, inexpensive method for precisely replicating complex hierarchal features of native tissue, towards a new model for regenerative medicine and drug delivery for intestinal disorders and diseases.

journal_name

Biofabrication

journal_title

Biofabrication

authors

Koppes AN,Kamath M,Pfluger CA,Burkey DD,Dokmeci M,Wang L,Carrier RL

doi

10.1088/1758-5090/8/3/035011

subject

Has Abstract

pub_date

2016-08-22 00:00:00

pages

035011

issue

3

eissn

1758-5082

issn

1758-5090

journal_volume

8

pub_type

杂志文章
  • A composite hydrogel-3D printed thermoplast osteochondral anchor as example for a zonal approach to cartilage repair: in vivo performance in a long-term equine model.

    abstract::Recent research has been focusing on the generation of living personalized osteochondral constructs for joint repair. Native articular cartilage has a zonal structure, which is not reflected in current constructs and which may be a cause of the frequent failure of these repair attempts. Therefore, we investigated the ...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab94ce

    authors: Mancini IAD,Schmidt S,Brommer H,Pouran B,Schäfer S,Tessmar J,Mensinga A,van Rijen MHP,Groll J,Blunk T,Levato R,Malda J,van Weeren PR

    更新日期:2020-07-01 00:00:00

  • Optimized silicon reinforcement of carbon coatings by pulsed laser technique for superior functional biomedical surfaces fabrication.

    abstract::We report on the fabrication of silicon-reinforced carbon (C:Si) structures by combinatorial pulsed laser deposition to search for the best design for a new generation of multi-functional coated implants. The synthesized films were characterized from the morphological, structural, compositional, mechanical and microbi...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa7076

    authors: Mihailescu IN,Bociaga D,Popescu-Pelin G,Stan GE,Duta L,Socol G,Chifiriuc MC,Bleotu C,Lazar V,Husanu MA,Zgura I,Miculescu F,Negut I,Hapenciuc C

    更新日期:2017-06-01 00:00:00

  • Influence of patterned topographic features on the formation of cardiac cell clusters and their rhythmic activities.

    abstract::In conventional primary cultures, cardiac cells prepared from a newborn rat undergo spontaneous formation of cell clusters after several days. These cell clusters may be non-homogeneously distributed on a flat surface and show irregular beating which can be recorded by calcium ion imaging. In order to improve the cell...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/5/3/035013

    authors: Wang L,Liu L,Magome N,Agladze K,Chen Y

    更新日期:2013-09-01 00:00:00

  • Biofabrication of neural microphysiological systems using magnetic spheroid bioprinting.

    abstract::The high attrition rate of neuro-pharmaceuticals as they proceed to market necessitates the development of clinically-relevant in vitro neural microphysiological systems that can be utilized during the preclinical screening phase to assess the safety and efficacy of potential compounds. Historically, proposed models h...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab41b4

    authors: Bowser DA,Moore MJ

    更新日期:2019-10-21 00:00:00

  • Reactive jet impingement bioprinting of high cell density gels for bone microtissue fabrication.

    abstract::Advances in three-dimensional cell cultures offer new opportunities in biomedical research and drug development. However, there are still challenges to overcome, including the lack of reliability, repeatability and complexity of tissues obtained by these techniques. In this study, we describe a new bioprinting system ...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aaf625

    authors: da Conceicao Ribeiro R,Pal D,Ferreira AM,Gentile P,Benning M,Dalgarno K

    更新日期:2018-12-27 00:00:00

  • A tailored three-dimensionally printable agarose-collagen blend allows encapsulation, spreading, and attachment of human umbilical artery smooth muscle cells.

    abstract::In recent years, novel biofabrication technologies have enabled the rapid manufacture of hydrogel-cell suspensions into tissue-imitating constructs. The development of novel materials for biofabrication still remains a challenge due to a gap between contradicting requirements such as three-dimensional printability and...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/8/2/025011

    authors: Köpf M,Campos DF,Blaeser A,Sen KS,Fischer H

    更新日期:2016-05-20 00:00:00

  • Homogeneous hydroxyapatite/alginate composite hydrogel promotes calcified cartilage matrix deposition with potential for three-dimensional bioprinting.

    abstract::Calcified cartilage regeneration plays an important role in successful osteochondral repair, since it provides a biological and mechanical transition from the unmineralized cartilage at the articulating surface to the underlying mineralized bone. To biomimic native calcified cartilage in engineered constructs, here we...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aaf44a

    authors: You F,Chen X,Cooper DML,Chang T,Eames BF

    更新日期:2018-12-27 00:00:00

  • Biofabrication of nerve fibers with mimetic myelin sheath-like structure and aligned fibrous niche.

    abstract::Nerve tissues contain hierarchically ordered nerve fibers, while each of the nerve fibers has nano-oriented fibrous extracellular matrix and a core-shell structure of tubular myelin sheath with elongated axons encapsulated. Here, we report, for the first time, a ready approach to fabricate biomimetic nerve fibers whic...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab860d

    authors: Chen S,Wu C,Liu A,Wei D,Xiao Y,Guo Z,Chen L,Zhu Y,Sun J,Luo H,Fan H

    更新日期:2020-05-12 00:00:00

  • Process- and bio-inspired hydrogels for 3D bioprinting of soft free-standing neural and glial tissues.

    abstract::A bio-inspired hydrogel for 3D bioprinting of soft free-standing neural tissues is presented. The novel filler-free bioinks were designed by combining natural polymers for extracellular matrix biomimicry with synthetic polymers to endow desirable rheological properties for 3D bioprinting. Crosslinking of thiolated Plu...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab02c9

    authors: Haring AP,Thompson EG,Tong Y,Laheri S,Cesewski E,Sontheimer H,Johnson BN

    更新日期:2019-02-25 00:00:00

  • 3D printing of step-gradient nanocomposite hydrogels for controlled cell migration.

    abstract::In this study, we report the step-gradient nanocomposite (NC) hydrogel generated easily by spatial connection of different nanocomposite hydrogel pastes varying in the concentrations of nanomaterials with the aid of a 3D printing technique. The prepared 3D printed gradient NC hydrogel has self-adhesive properties and ...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab3582

    authors: Motealleh A,Çelebi-Saltik B,Ermis N,Nowak S,Khademhosseini A,Kehr NS

    更新日期:2019-08-22 00:00:00

  • Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks.

    abstract::Bioprinting of living cells is rapidly developing as an advanced biofabrication approach to engineer tissues. Bioinks can be extruded in three-dimensions (3D) to fabricate complex and hierarchical constructs for implantation. However, a lack of functionality can often be attributed to poor bioink properties. Indeed, a...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab19fd

    authors: Cidonio G,Alcala-Orozco CR,Lim KS,Glinka M,Mutreja I,Kim YH,Dawson JI,Woodfield TBF,Oreffo ROC

    更新日期:2019-06-12 00:00:00

  • Cell patterning through inkjet printing of one cell per droplet.

    abstract::The inkjet ejection technology used in printers has been adopted and research has been conducted on manufacturing artificial tissue by patterning cells through micronozzle ejection of small droplets containing multiple cells. However, stable injection of cells has proven difficult, owing to the frequent occurrence of ...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/4/4/045005

    authors: Yamaguchi S,Ueno A,Akiyama Y,Morishima K

    更新日期:2012-12-01 00:00:00

  • In vitro and in vivo angiogenic capacity of BM-MSCs/HUVECs and AT-MSCs/HUVECs cocultures.

    abstract::The aim of this study was to comparatively evaluate the angiogenic capacity of cocultures using either human bone marrow- or human adipose tissue-derived mesenchymal stem cells (MSCs) (BM- or AT-MSCs) with human umbilical vein endothelial cells (HUVECs) both in vitro and in vivo at early time points (i.e. days 3 and 7...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/6/1/015005

    authors: Ma J,Yang F,Both SK,Prins HJ,Helder MN,Pan J,Cui FZ,Jansen JA,van den Beucken JJ

    更新日期:2014-03-01 00:00:00

  • Three-dimensional culture of epidermal cells on ordered cellulose scaffolds.

    abstract::An ordered cellulose film scaffold, termed a nematic ordered cellulose (NOC) template, had unique surface properties and successfully induced the establishment of a three-dimensional (3D), hierarchical structure of epidermal cells by cell attachment and subsequent culture. Initially, the scaffold surface properties we...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/5/2/025010

    authors: Seyama T,Suh EY,Kondo T

    更新日期:2013-06-01 00:00:00

  • Laser-direct writing by two-photon polymerization of 3D honeycomb-like structures for bone regeneration.

    abstract::A major limitation of existing 3D implantable structures for bone tissue engineering is that most of the cells rapidly attach on the outer edges of the structure, restricting the cells penetration into the inner parts and causing the formation of a necrotic core. Furthermore, these structures generally possess a rando...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aaa718

    authors: Paun IA,Popescu RC,Mustaciosu CC,Zamfirescu M,Calin BS,Mihailescu M,Dinescu M,Popescu A,Chioibasu D,Soproniy M,Luculescu CR

    更新日期:2018-02-05 00:00:00

  • Horseradish peroxidase/catalase-mediated cell-laden alginate-based hydrogel tube production in two-phase coaxial flow of aqueous solutions for filament-like tissues fabrication.

    abstract::We report a method for preparing cell-laden hydrogel tubes. This method uses a coaxial double-orifice spinneret, simpler than triple-orifice spinnerets which have been used for preparing similar constructs. The intended application was to create a template for preparing filament-like structures composed of two heterog...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/5/1/015012

    authors: Sakai S,Liu Y,Mah EJ,Taya M

    更新日期:2013-03-01 00:00:00

  • Hierarchical multilayer assembly of an ordered nanofibrous scaffold via thermal fusion bonding.

    abstract::A major challenge in muscle tissue engineering is mimicking the ordered nanostructure of native collagen fibrils in muscles. Electrospun nanofiber constructs have been proposed as promising candidate alternatives to natural extracellular matrix. Here, we introduce a novel method to fabricate a two-dimension (2D) sheet...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/6/2/024107

    authors: Park SH,Koh UH,Kim M,Yang DY,Suh KY,Shin JH

    更新日期:2014-06-01 00:00:00

  • Structural monitoring and modeling of the mechanical deformation of three-dimensional printed poly(ε-caprolactone) scaffolds.

    abstract::Three-dimensional (3D) printed poly(ε-caprolactone) (PCL) based scaffolds have being proposed for different tissue engineering applications. This study addresses the design and fabrication of 3D PCL constructs with different struts alignments at 90°, 45° and 90° with offset. The morphology and the mechanical behavior ...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa698e

    authors: Ribeiro JFM,Oliveira SM,Alves JL,Pedro AJ,Reis RL,Fernandes EM,Mano JF

    更新日期:2017-05-11 00:00:00

  • Ultrasound-assisted biofabrication and bioprinting of preferentially aligned three-dimensional cellular constructs.

    abstract::A critical consideration in tissue engineering is to recapitulate the microstructural organization of native tissues that is essential to their function. Scaffold-based techniques have focused on achieving this via the contact guidance principle wherein topographical cues offered by scaffold fibers direct migration an...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab15cf

    authors: Chansoria P,Narayanan LK,Schuchard K,Shirwaiker R

    更新日期:2019-04-26 00:00:00

  • Cell-printed 3D liver-on-a-chip possessing a liver microenvironment and biliary system.

    abstract::To overcome the drawbacks of in vitro liver testing during drug development, numerous liver-on-a-chip models have been developed. However, current liver-on-a-chip technologies are labor-intensive, lack extracellular matrix (ECM) essential for liver cells, and lack a biliary system essential for excreting bile acids, w...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aaf9fa

    authors: Lee H,Chae S,Kim JY,Han W,Kim J,Choi Y,Cho DW

    更新日期:2019-01-16 00:00:00

  • Digital fabrication of multi-material biomedical objects.

    abstract::This paper describes a multi-material virtual prototyping (MMVP) system for modelling and digital fabrication of discrete and functionally graded multi-material objects for biomedical applications. The MMVP system consists of a DMMVP module, an FGMVP module and a virtual reality (VR) simulation module. The DMMVP modul...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/1/4/045001

    authors: Cheung HH,Choi SH

    更新日期:2009-12-01 00:00:00

  • Adipogenic differentiation of laser-printed 3D tissue grafts consisting of human adipose-derived stem cells.

    abstract::Laser-assisted bioprinting (LaBP) allows the realization of computer-generated 3D tissue grafts consisting of cells embedded in a hydrogel environment. In this study, human adipose-derived stem cells (hASCs) were printed in a free-scalable 3D grid pattern by means of LaBP. We demonstrate that neither the proliferation...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/3/1/015005

    authors: Gruene M,Pflaum M,Deiwick A,Koch L,Schlie S,Unger C,Wilhelmi M,Haverich A,Chichkov BN

    更新日期:2011-03-01 00:00:00

  • A droplet-based building block approach for bladder smooth muscle cell (SMC) proliferation.

    abstract::Tissue engineering based on building blocks is an emerging method to fabricate 3D tissue constructs. This method requires depositing and assembling building blocks (cell-laden microgels) at high throughput. The current technologies (e.g., molding and photolithography) to fabricate microgels have throughput challenges ...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/2/1/014105

    authors: Xu F,Moon SJ,Emre AE,Turali ES,Song YS,Hacking SA,Nagatomi J,Demirci U

    更新日期:2010-03-01 00:00:00

  • In situ UV-crosslinking gelatin electrospun fibers for tissue engineering applications.

    abstract::Electrospun fibers of natural polymers are desirable for biomedical applications such as tissue engineering. Crosslinking of electrospun fibers of natural polymers is needed to prevent dissolution in water and to enhance mechanical strength. In this study, an in situ UV-crosslinking method was developed for crosslinki...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/5/3/035008

    authors: Lin WH,Tsai WB

    更新日期:2013-09-01 00:00:00

  • Direct printing of patterned three-dimensional ultrafine fibrous scaffolds by stable jet electrospinning for cellular ingrowth.

    abstract::Electrospinning has been widely used to produce ultrafine fibers in microscale and nanoscale; however, traditional electrospinning processes are currently beset by troublesome limitations in fabrication of 3D periodic porous structures because of the chaotic nature of the electrospinning jet. Here we report a novel st...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/7/4/045004

    authors: Yuan H,Zhou Q,Li B,Bao M,Lou X,Zhang Y

    更新日期:2015-11-05 00:00:00

  • Perfusion bioreactor enabled fluid-derived shear stress conditions for novel bone metastatic prostate cancer testbed.

    abstract::Critical understanding of the complex metastatic cascade of prostate cancer is necessary for the development of a therapeutic interventions for treating metastatic prostate cancer. Increasing evidence supports the synergistic role of biochemical and biophysical cues in cancer progression at metastases. The biochemical...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/abd9d6

    authors: Jasuja H,Kar S,Katti DR,Katti K

    更新日期:2021-01-08 00:00:00

  • Fabrication of three-dimensional bioplotted hydrogel scaffolds for islets of Langerhans transplantation.

    abstract::In clinical islet transplantation, allogeneic islets of Langerhans are transplanted into the portal vein of patients with type 1 diabetes, enabling the restoration of normoglycemia. After intra-hepatic transplantation several factors are involved in the decay in islet mass and function mainly caused by an immediate bl...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/7/2/025009

    authors: Marchioli G,van Gurp L,van Krieken PP,Stamatialis D,Engelse M,van Blitterswijk CA,Karperien MB,de Koning E,Alblas J,Moroni L,van Apeldoorn AA

    更新日期:2015-05-28 00:00:00

  • 3D bioprinting of scaffolds with living Schwann cells for potential nerve tissue engineering applications.

    abstract::Three-dimensional bioprinting of biomaterials shows great potential for producing cell-encapsulated scaffolds to repair nerves after injury or disease. For this, preparation of biomaterials and bioprinting itself are critical to create scaffolds with both biological and mechanical properties appropriate for nerve rege...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aacd30

    authors: Ning L,Sun H,Lelong T,Guilloteau R,Zhu N,Schreyer DJ,Chen X

    更新日期:2018-06-29 00:00:00

  • Biomimetic matrix fabricated by LMP-1 gene-transduced MC3T3-E1 cells for bone regeneration.

    abstract::Bone healing is regulated by multiple microenvironmental signals provided by the extracellular matrix (ECM). This study aimed to mimic the native osteoinductive microenvironment by developing an ECM using gene-transduced cells. The LIM mineralization protein-1 (LMP-1) gene was transferred to murine pre-osteoblast cell...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa8dd1

    authors: Ma J,Guo W,Gao M,Huang B,Qi Q,Ling Z,Chen Y,Hu H,Zhou H,Yu F,Chen K,Richards G,Lin J,Zhou Z,Xiao D,Zou X

    更新日期:2017-11-14 00:00:00

  • Fabrication of omentum-based matrix for engineering vascularized cardiac tissues.

    abstract::Fabricating three-dimensional, biocompatible microenvironments to support functional tissue assembly remains a key challenge in cardiac tissue engineering. We hypothesized that since the omentum can be removed from patients by minimally invasive procedures, the obtained underlying matrices can be manipulated to serve ...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/6/2/024101

    authors: Shevach M,Soffer-Tsur N,Fleischer S,Shapira A,Dvir T

    更新日期:2014-06-01 00:00:00