Fabrication of three-dimensional bioplotted hydrogel scaffolds for islets of Langerhans transplantation.

Abstract:

:In clinical islet transplantation, allogeneic islets of Langerhans are transplanted into the portal vein of patients with type 1 diabetes, enabling the restoration of normoglycemia. After intra-hepatic transplantation several factors are involved in the decay in islet mass and function mainly caused by an immediate blood mediated inflammatory response, lack of vascularization, and allo- and autoimmunity. Bioengineered scaffolds can potentially provide an alternative extra-hepatic transplantation site for islets by improving nutrient diffusion and blood supply to the scaffold. This would ultimately result in enhanced islet viability and functionality compared to conventional intra portal transplantation. In this regard, the biomaterial choice, the three-dimensional (3D) shape and scaffold porosity are key parameters for an optimal construct design and, ultimately, transplantation outcome. We used 3D bioplotting for the fabrication of a 3D alginate-based porous scaffold as an extra-hepatic islet delivery system. In 3D-plotted alginate scaffolds the surface to volume ratio, and thus oxygen and nutrient transport, is increased compared to conventional bulk hydrogels. Several alginate mixtures have been tested for INS1E β-cell viability. Alginate/gelatin mixtures resulted in high plotting performances, and satisfactory handling properties. INS1E β-cells, human and mouse islets were successfully embedded in 3D-plotted constructs without affecting their morphology and viability, while preventing their aggregation. 3D plotted scaffolds could help in creating an alternative extra-hepatic transplantation site. In contrast to microcapsule embedding, in 3D plotted scaffold islets are confined in one location and blood vessels can grow into the pores of the construct, in closer contact to the embedded tissue. Once revascularization has occurred, the functionality is fully restored upon degradation of the scaffold.

journal_name

Biofabrication

journal_title

Biofabrication

authors

Marchioli G,van Gurp L,van Krieken PP,Stamatialis D,Engelse M,van Blitterswijk CA,Karperien MB,de Koning E,Alblas J,Moroni L,van Apeldoorn AA

doi

10.1088/1758-5090/7/2/025009

subject

Has Abstract

pub_date

2015-05-28 00:00:00

pages

025009

issue

2

eissn

1758-5082

issn

1758-5090

journal_volume

7

pub_type

杂志文章
  • Free-floating epithelial micro-tissue arrays: a low cost and versatile technique.

    abstract::Three-dimensional (3D) tissue models are invaluable tools that can closely reflect the in vivo physiological environment. However, they are usually difficult to develop, have a low throughput and are often costly; limiting their utility to most laboratories. The recent availability of inexpensive additive manufacturin...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/8/4/045006

    authors: Flood P,Alvarez L,Reynaud EG

    更新日期:2016-10-11 00:00:00

  • Hydrogel-fibre composites with independent control over cell adhesion to gel and fibres as an integral approach towards a biomimetic artificial ECM.

    abstract::In the body, cells are surrounded by an interconnected mesh of insoluble, bioactive protein fibres to which they adhere in a well-controlled manner, embedded in a hydrogel-like highly hydrated matrix. True morphological and biochemical mimicry of this so-called extracellular matrix (ECM) remains a challenge but appear...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/6/2/024106

    authors: Schulte VA,Hahn K,Dhanasingh A,Heffels KH,Groll J

    更新日期:2014-06-01 00:00:00

  • An in vitro vascular chip using 3D printing-enabled hydrogel casting.

    abstract::An important unsolved challenge in tissue engineering has been the inability to replicate the geometry and function of vascular networks and blood vessels. Here, we engineer a user-defined 3D microfluidic vascular channel using 3D printing-enabled hydrogel casting. First, a hollow L-shaped channel is developed using a...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/8/3/035015

    authors: Yang L,Shridhar SV,Gerwitz M,Soman P

    更新日期:2016-08-26 00:00:00

  • Biofabrication of neural microphysiological systems using magnetic spheroid bioprinting.

    abstract::The high attrition rate of neuro-pharmaceuticals as they proceed to market necessitates the development of clinically-relevant in vitro neural microphysiological systems that can be utilized during the preclinical screening phase to assess the safety and efficacy of potential compounds. Historically, proposed models h...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab41b4

    authors: Bowser DA,Moore MJ

    更新日期:2019-10-21 00:00:00

  • Horseradish peroxidase/catalase-mediated cell-laden alginate-based hydrogel tube production in two-phase coaxial flow of aqueous solutions for filament-like tissues fabrication.

    abstract::We report a method for preparing cell-laden hydrogel tubes. This method uses a coaxial double-orifice spinneret, simpler than triple-orifice spinnerets which have been used for preparing similar constructs. The intended application was to create a template for preparing filament-like structures composed of two heterog...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/5/1/015012

    authors: Sakai S,Liu Y,Mah EJ,Taya M

    更新日期:2013-03-01 00:00:00

  • Cell patterning through inkjet printing of one cell per droplet.

    abstract::The inkjet ejection technology used in printers has been adopted and research has been conducted on manufacturing artificial tissue by patterning cells through micronozzle ejection of small droplets containing multiple cells. However, stable injection of cells has proven difficult, owing to the frequent occurrence of ...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/4/4/045005

    authors: Yamaguchi S,Ueno A,Akiyama Y,Morishima K

    更新日期:2012-12-01 00:00:00

  • Hierarchical multilayer assembly of an ordered nanofibrous scaffold via thermal fusion bonding.

    abstract::A major challenge in muscle tissue engineering is mimicking the ordered nanostructure of native collagen fibrils in muscles. Electrospun nanofiber constructs have been proposed as promising candidate alternatives to natural extracellular matrix. Here, we introduce a novel method to fabricate a two-dimension (2D) sheet...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/6/2/024107

    authors: Park SH,Koh UH,Kim M,Yang DY,Suh KY,Shin JH

    更新日期:2014-06-01 00:00:00

  • Autonomous spheroid formation by culture plate compartmentation.

    abstract::Scaffold-free 3D cell cultures (e.g. pellet cultures) are widely used in medical science, including cartilage regeneration. Their drawbacks are high time/reagent consumption and lack of early readout parameters. While optimisation was achieved by automation or simplified spheroid generation, most culture systems remai...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/abe186

    authors: Fürsatz M,Gerges P,Wolbank S,Nürnberger S

    更新日期:2021-01-29 00:00:00

  • Printability study of metal ion crosslinked PEG-catechol based inks.

    abstract::In this paper we explore the printability of reversible networks formed by catechol functionalized PEG solutions and metal cations (Al3+, Fe3+ or V3+). The printability and shape fidelity were dependent on the ink composition (metal ion type, pH, PEG molecular weight) and printing parameters (extrusion pressure and pr...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab673a

    authors: Włodarczyk-Biegun MK,Paez JI,Villiou M,Feng J,Del Campo A

    更新日期:2020-04-29 00:00:00

  • Process- and bio-inspired hydrogels for 3D bioprinting of soft free-standing neural and glial tissues.

    abstract::A bio-inspired hydrogel for 3D bioprinting of soft free-standing neural tissues is presented. The novel filler-free bioinks were designed by combining natural polymers for extracellular matrix biomimicry with synthetic polymers to endow desirable rheological properties for 3D bioprinting. Crosslinking of thiolated Plu...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab02c9

    authors: Haring AP,Thompson EG,Tong Y,Laheri S,Cesewski E,Sontheimer H,Johnson BN

    更新日期:2019-02-25 00:00:00

  • Cell adhesion pattern created by OSTE polymers.

    abstract::Engineering surfaces with functional polymers is a crucial issue in the field of micro/nanofabrication and cell-material interface studies. For many applications of surface patterning, it does not need cells to attach on the whole surface. Herein, we introduce a novel polymer fabrication protocol of off-stoichiometry ...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa669c

    authors: Liu W,Li Y,Ding X

    更新日期:2017-04-24 00:00:00

  • Cell-laden four-dimensional bioprinting using near-infrared-triggered shape-morphing alginate/polydopamine bioinks.

    abstract::Four-dimensional (4D) bioprinting of cell-laden constructs with programmable shape-morphing structures has gained increasing attention in the field of biofabrication and tissue engineering. Currently, most of the widely used materials for 4D printing, including N-isopropylacrylamide-based polymers, are not commonly us...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab39c5

    authors: Luo Y,Lin X,Chen B,Wei X

    更新日期:2019-09-13 00:00:00

  • A functionally gradient variational porosity architecture for hollowed scaffolds fabrication.

    abstract::This paper presents a novel continuous tool-path planning methodology for hollowed scaffold fabrication in tissue engineering. A new functionally gradient porous architecture is proposed with a continuous material deposition planning scheme. A controllable variational pore size and hence the porosity have been achieve...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/3/3/034106

    authors: Khoda AK,Ozbolat IT,Koc B

    更新日期:2011-09-01 00:00:00

  • In vitro and in vivo angiogenic capacity of BM-MSCs/HUVECs and AT-MSCs/HUVECs cocultures.

    abstract::The aim of this study was to comparatively evaluate the angiogenic capacity of cocultures using either human bone marrow- or human adipose tissue-derived mesenchymal stem cells (MSCs) (BM- or AT-MSCs) with human umbilical vein endothelial cells (HUVECs) both in vitro and in vivo at early time points (i.e. days 3 and 7...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/6/1/015005

    authors: Ma J,Yang F,Both SK,Prins HJ,Helder MN,Pan J,Cui FZ,Jansen JA,van den Beucken JJ

    更新日期:2014-03-01 00:00:00

  • 3D printing PLGA: a quantitative examination of the effects of polymer composition and printing parameters on print resolution.

    abstract::In the past few decades, 3D printing has played a significant role in fabricating scaffolds with consistent, complex structure that meet patient-specific needs in future clinical applications. Although many studies have contributed to this emerging field of additive manufacturing, which includes material development a...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa6370

    authors: Guo T,Holzberg TR,Lim CG,Gao F,Gargava A,Trachtenberg JE,Mikos AG,Fisher JP

    更新日期:2017-04-12 00:00:00

  • Direct printing of patterned three-dimensional ultrafine fibrous scaffolds by stable jet electrospinning for cellular ingrowth.

    abstract::Electrospinning has been widely used to produce ultrafine fibers in microscale and nanoscale; however, traditional electrospinning processes are currently beset by troublesome limitations in fabrication of 3D periodic porous structures because of the chaotic nature of the electrospinning jet. Here we report a novel st...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/7/4/045004

    authors: Yuan H,Zhou Q,Li B,Bao M,Lou X,Zhang Y

    更新日期:2015-11-05 00:00:00

  • Engineering three-dimensional cell mechanical microenvironment with hydrogels.

    abstract::Cell mechanical microenvironment (CMM) significantly affects cell behaviors such as spreading, migration, proliferation and differentiation. However, most studies on cell response to mechanical stimulation are based on two-dimensional (2D) planar substrates, which cannot mimic native three-dimensional (3D) CMM. Accumu...

    journal_title:Biofabrication

    pub_type: 杂志文章,评审

    doi:10.1088/1758-5082/4/4/042001

    authors: Huang G,Wang L,Wang S,Han Y,Wu J,Zhang Q,Xu F,Lu TJ

    更新日期:2012-12-01 00:00:00

  • Digital fabrication of multi-material biomedical objects.

    abstract::This paper describes a multi-material virtual prototyping (MMVP) system for modelling and digital fabrication of discrete and functionally graded multi-material objects for biomedical applications. The MMVP system consists of a DMMVP module, an FGMVP module and a virtual reality (VR) simulation module. The DMMVP modul...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/1/4/045001

    authors: Cheung HH,Choi SH

    更新日期:2009-12-01 00:00:00

  • Perfusion bioreactor enabled fluid-derived shear stress conditions for novel bone metastatic prostate cancer testbed.

    abstract::Critical understanding of the complex metastatic cascade of prostate cancer is necessary for the development of a therapeutic interventions for treating metastatic prostate cancer. Increasing evidence supports the synergistic role of biochemical and biophysical cues in cancer progression at metastases. The biochemical...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/abd9d6

    authors: Jasuja H,Kar S,Katti DR,Katti K

    更新日期:2021-01-08 00:00:00

  • Trapping cell spheroids and organoids using digital acoustofluidics.

    abstract::The precise positioning and arrangement of cell spheroids and organoids are critical to reconstructing complex tissue architecture for tissue engineering and regenerative medicine. Here, we present a digital acoustofluidic method to manipulate cell spheroids and organoids with unprecedented dexterity. By introducing l...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab9582

    authors: Cai H,Wu Z,Ao Z,Nunez A,Chen B,Jiang L,Bondesson M,Guo F

    更新日期:2020-07-01 00:00:00

  • In situ modification of cell-culture scaffolds by photocatalytic decomposition of organosilane monolayers.

    abstract::We demonstrate a novel application of TiO2 photocatalysis for modifying the cell affinity of a scaffold surface in a cell-culture environment. An as-deposited octadecyltrichlorosilane self-assembled monolayer (OTS SAM) on TiO2 was found to be hydrophobic and stably adsorbed serum albumins that blocked subsequent adsor...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/6/3/035021

    authors: Yamamoto H,Demura T,Morita M,Kono S,Sekine K,Shinada T,Nakamura S,Tanii T

    更新日期:2014-09-01 00:00:00

  • Assembling of electrospun meshes into three-dimensional porous scaffolds for bone repair.

    abstract::Technical limitations of traditional electrospinning make it hard to produce three-dimensional (3D) scaffolds with hierarchical pore structures. Here, porous polycaprolactone (PCL) nanofiber meshes with different nano-hydroxyapatite (nHA) concentrations were prepared by electrospinning with stainless steel mesh as the...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa5c99

    authors: Song J,Zhu G,Wang L,An G,Shi X,Wang Y

    更新日期:2017-02-14 00:00:00

  • Extrusion-based printing of sacrificial Carbopol ink for fabrication of microfluidic devices.

    abstract::Current technologies for manufacturing of microfluidic devices include soft-lithography, wet and dry etching, thermoforming, micro-machining and three-dimensional (3D) printing. Among them, soft-lithography has been the mostly preferred one in medical and pharmaceutical fields due to its ability to generate polydimeth...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab10ae

    authors: Ozbolat V,Dey M,Ayan B,Ozbolat IT

    更新日期:2019-04-16 00:00:00

  • On chip purification of hiPSC-derived cardiomyocytes using a fishnet-like microstructure.

    abstract::Human induced pluripotent stem cells (hiPSCs) can be differentiated at high efficiency into cells of a targeting type but the resulting cell population has to be of high purity for clinical therapies to avoid teratomas. Herein, we report a microfluidic device with integrated and surface functionalised fishnet-like str...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/8/3/035017

    authors: Li X,Yu L,Li J,Minami I,Nakajima M,Noda Y,Kotera H,Liu L,Chen Y

    更新日期:2016-09-08 00:00:00

  • Towards 4D printed scaffolds for tissue engineering: exploiting 3D shape memory polymers to deliver time-controlled stimulus on cultured cells.

    abstract::Tissue engineering needs innovative solutions to better fit the requirements of a minimally invasive approach, providing at the same time instructive cues to cells. The use of shape memory polyurethane has been investigated by producing 4D scaffolds via additive manufacturing technology. Scaffolds with two different p...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa8114

    authors: Hendrikson WJ,Rouwkema J,Clementi F,van Blitterswijk CA,Farè S,Moroni L

    更新日期:2017-08-02 00:00:00

  • Indirect three-dimensional printing of synthetic polymer scaffold based on thermal molding process.

    abstract::One of the major issues in tissue engineering has been the development of three-dimensional (3D) scaffolds, which serve as a structural template for cell growth and extracellular matrix formation. In scaffold-based tissue engineering, 3D printing (3DP) technology has been successfully applied for the fabrication of co...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/6/2/025003

    authors: Park JH,Jung JW,Kang HW,Cho DW

    更新日期:2014-06-01 00:00:00

  • Importance of endogenous extracellular matrix in biomechanical properties of human skin model.

    abstract::The physical and mechanical properties of cells modulate their behavior such proliferation rate, migration and extracellular matrix remodeling. In order to study cell behavior in a tissue-like environment in vitro, it is of utmost importance to develop biologically and physically relevant 3D cell models. Here, we char...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa6ed5

    authors: Pillet F,Gibot L,Madi M,Rols MP,Dague E

    更新日期:2017-05-11 00:00:00

  • Reliable inkjet printing of chondrocytes and MSCs using reservoir agitation.

    abstract::Drop-on-demand (DoD) inkjet printing has been explored for a range of applications, including those to selectively deposit cellular material, due to the high accuracy and scalability of such systems when compared with alternative bioprinting techniques. Despite this, there remain considerable limitations when handling...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aba2f8

    authors: Dudman JPR,Ferreira AM,Gentile P,Wang X,Ribeiro RDC,Benning M,Dalgarno KW

    更新日期:2020-08-12 00:00:00

  • The fabrication and cell culture of three-dimensional rolled scaffolds with complex micro-architectures.

    abstract::Cell cultures for tissue engineering are traditionally prepared on two-dimensional or three-dimensional scaffolds with simple pores; however, this limits mass transportation, which is necessary for cell viability and function. In this paper, an innovative method is proposed for fabricating porous scaffolds with design...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/4/1/015004

    authors: Liu Y,Li X,Qu X,Zhu L,He J,Zhao Q,Wu W,Li D

    更新日期:2012-03-01 00:00:00

  • Engineered tissue micro-rings fabricated from aggregated fibroblasts and microfibres for a bottom-up tissue engineering approach.

    abstract::Tissue rings with incorporated microscaffolds have been engineered as promising building blocks for constructing biological tubes from the bottom up. However, the microscaffolds available for incorporation are very limited at present. In this paper we provide an efficient strategy to first incorporate microfluidic spu...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab1ee5

    authors: Sun T,Shi Q,Yao Y,Sun J,Wang H,Huang Q,Fukuda T

    更新日期:2019-06-25 00:00:00