Direct extrusion of individually encapsulated endothelial and smooth muscle cells mimicking blood vessel structures and vascular native cell alignment.

Abstract:

:Cardiovascular diseases (CVDs) are considered the principal cause of worldwide death, being atherosclerosis the main etiology. Up to now, the predominant treatment for CVDs has been bypass surgery from autologous source. However, due to previous harvest or the type of disease, this is not always an option. For this reason, tissue engineering blood vessels (TEBV) emerged as an alternative graft source for blood vessel replacement. In order to develop a TEBV, it should mimic the architecture of a native blood vessel encapsulating the specific vascular cells in their respective layers with native alignment, and with appropriate mechanical stability. Here, we propose the extrusion of two different cell encapsulating hydrogels, mainly alginate and collagen, and a sacrificial polymer, through a triple coaxial nozzle, which in contact with a crosslinking solution allows the formation of bilayered hollow fibers, mimicking the architecture of native blood vessels. Prior to extrusion, the innermost cell encapsulating hydrogel was loaded with human umbilical vein endothelial cells (HUVECs), whereas the outer hydrogel was loaded with human aortic smooth muscle cells (HASMCs). The size of the TEVB could be controlled by changing the injection speed, presenting homogeneity between the constructs. The obtained structures were robust, allowing its manipulation as well as the perfusion of liquids. Both cell types presented high rates of survival after the extrusion process as well as after 20 days in culture (over 90%). Additionally, a high percentage of HASMC and HUVEC were aligned perpendicular and parallel to the TEBV, respectively, in their own layers, resembling the physiological arrangement found in vivo. Our approach enables the rapid formation of TEBV-like structures presenting high cell viability and allowing proliferation and natural alignment of vascular cells.

journal_name

Biofabrication

journal_title

Biofabrication

authors

Bosch Rué E,Delgado LM,Gil FJ,Perez RA

doi

10.1088/1758-5090/abbd27

subject

Has Abstract

pub_date

2020-09-30 00:00:00

eissn

1758-5082

issn

1758-5090

pub_type

杂志文章
  • The bio-gripper: a fluid-driven micro-manipulator of living tissue constructs for additive bio-manufacturing.

    abstract::We previously developed the Bio-Pick, Place, and Perfuse (Bio-P3) instrument to fabricate large perfusable tissue constructs by stacking and aligning scaffold-free living microtissues with integrated lumens. The Bio-P3 required an actuating mechanism to manipulate living microtissues of various sizes and shapes that a...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/8/2/025015

    authors: Ip BC,Cui F,Tripathi A,Morgan JR

    更新日期:2016-05-25 00:00:00

  • 3D printing of step-gradient nanocomposite hydrogels for controlled cell migration.

    abstract::In this study, we report the step-gradient nanocomposite (NC) hydrogel generated easily by spatial connection of different nanocomposite hydrogel pastes varying in the concentrations of nanomaterials with the aid of a 3D printing technique. The prepared 3D printed gradient NC hydrogel has self-adhesive properties and ...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab3582

    authors: Motealleh A,Çelebi-Saltik B,Ermis N,Nowak S,Khademhosseini A,Kehr NS

    更新日期:2019-08-22 00:00:00

  • Surface modification of electrospun fibre meshes by oxygen plasma for bone regeneration.

    abstract::Plasma treatment is a method to modify the physicochemical properties of biomaterials, which consequently may affect interactions with cells. Based on the rationale that physical cues on the surface of culture substrates and implants, such as surface roughness, have proven to alter cell behaviour, we used electrospinn...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/5/1/015006

    authors: Nandakumar A,Tahmasebi Birgani Z,Santos D,Mentink A,Auffermann N,van der Werf K,Bennink M,Moroni L,van Blitterswijk C,Habibovic P

    更新日期:2013-03-01 00:00:00

  • The fabrication and cell culture of three-dimensional rolled scaffolds with complex micro-architectures.

    abstract::Cell cultures for tissue engineering are traditionally prepared on two-dimensional or three-dimensional scaffolds with simple pores; however, this limits mass transportation, which is necessary for cell viability and function. In this paper, an innovative method is proposed for fabricating porous scaffolds with design...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/4/1/015004

    authors: Liu Y,Li X,Qu X,Zhu L,He J,Zhao Q,Wu W,Li D

    更新日期:2012-03-01 00:00:00

  • In situ UV-crosslinking gelatin electrospun fibers for tissue engineering applications.

    abstract::Electrospun fibers of natural polymers are desirable for biomedical applications such as tissue engineering. Crosslinking of electrospun fibers of natural polymers is needed to prevent dissolution in water and to enhance mechanical strength. In this study, an in situ UV-crosslinking method was developed for crosslinki...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/5/3/035008

    authors: Lin WH,Tsai WB

    更新日期:2013-09-01 00:00:00

  • Perfusion bioreactor enabled fluid-derived shear stress conditions for novel bone metastatic prostate cancer testbed.

    abstract::Critical understanding of the complex metastatic cascade of prostate cancer is necessary for the development of a therapeutic interventions for treating metastatic prostate cancer. Increasing evidence supports the synergistic role of biochemical and biophysical cues in cancer progression at metastases. The biochemical...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/abd9d6

    authors: Jasuja H,Kar S,Katti DR,Katti K

    更新日期:2021-01-08 00:00:00

  • Co-axial wet-spinning in 3D bioprinting: state of the art and future perspective of microfluidic integration.

    abstract::Nowadays, 3D bioprinting technologies are rapidly emerging in the field of tissue engineering and regenerative medicine as effective tools enabling the fabrication of advanced tissue constructs that can recapitulate in vitro organ/tissue functions. Selecting the best strategy for bioink deposition is often challenging...

    journal_title:Biofabrication

    pub_type: 杂志文章,评审

    doi:10.1088/1758-5090/aae605

    authors: Costantini M,Colosi C,Święszkowski W,Barbetta A

    更新日期:2018-11-09 00:00:00

  • Integrating self-assembly and biofabrication for the development of structures with enhanced complexity and hierarchical control.

    abstract::Nature has evolved to grow and regenerate tissues and organs using self-assembling processes capable of organizing a wide variety of molecular building-blocks at multiple size scales. As the field of biofabrication progresses, it is essential to develop innovative ways that can enhance our capacity to build more compl...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab84cb

    authors: Hedegaard CL,Mata A

    更新日期:2020-06-01 00:00:00

  • Three-dimensional tissues using human pluripotent stem cell spheroids as biofabrication building blocks.

    abstract::A recently emerged approach for tissue engineering is to biofabricate tissues using cellular spheroids as building blocks. Human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), can be cultured to generate large numbers of cells and can presumably...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa663b

    authors: Lin H,Li Q,Lei Y

    更新日期:2017-04-24 00:00:00

  • Indirect three-dimensional printing of synthetic polymer scaffold based on thermal molding process.

    abstract::One of the major issues in tissue engineering has been the development of three-dimensional (3D) scaffolds, which serve as a structural template for cell growth and extracellular matrix formation. In scaffold-based tissue engineering, 3D printing (3DP) technology has been successfully applied for the fabrication of co...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/6/2/025003

    authors: Park JH,Jung JW,Kang HW,Cho DW

    更新日期:2014-06-01 00:00:00

  • Shear stress induced by fluid flow produces improvements in tissue-engineered cartilage.

    abstract::Tissue engineering aims to create implantable biomaterials for the repair and regeneration of damaged tissues. In vitro tissue engineering is generally based on static culture, which limits access to nutrients and lacks mechanical signaling. Using shear stress is controversial because in some cases it can lead to cell...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aba412

    authors: Salinas EY,Aryaei A,Paschos N,Berson E,Kwon H,Hu JC,Athanasiou KA

    更新日期:2020-08-10 00:00:00

  • Cell-printed 3D liver-on-a-chip possessing a liver microenvironment and biliary system.

    abstract::To overcome the drawbacks of in vitro liver testing during drug development, numerous liver-on-a-chip models have been developed. However, current liver-on-a-chip technologies are labor-intensive, lack extracellular matrix (ECM) essential for liver cells, and lack a biliary system essential for excreting bile acids, w...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aaf9fa

    authors: Lee H,Chae S,Kim JY,Han W,Kim J,Choi Y,Cho DW

    更新日期:2019-01-16 00:00:00

  • Printability study of metal ion crosslinked PEG-catechol based inks.

    abstract::In this paper we explore the printability of reversible networks formed by catechol functionalized PEG solutions and metal cations (Al3+, Fe3+ or V3+). The printability and shape fidelity were dependent on the ink composition (metal ion type, pH, PEG molecular weight) and printing parameters (extrusion pressure and pr...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab673a

    authors: Włodarczyk-Biegun MK,Paez JI,Villiou M,Feng J,Del Campo A

    更新日期:2020-04-29 00:00:00

  • Development of TRACER: tissue roll for analysis of cellular environment and response.

    abstract::The tumour microenvironment is heterogeneous and consists of multiple cell types, variable extracellular matrix (ECM) composition, and contains cell-defined gradients of small molecules, oxygen, nutrients and waste. Emerging in vitro cell culture systems that attempt to replicate these features often fail to incorpora...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/8/4/045008

    authors: Rodenhizer D,Cojocari D,Wouters BG,McGuigan AP

    更新日期:2016-10-18 00:00:00

  • Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering.

    abstract::Here we developed a composite scaffold of pearl/poly(lactic-co-glycolic acid) (pearl/PLGA) utilizing the low-temperature deposition manufacturing (LDM). LDM makes it possible to fabricate scaffolds with designed microstructure and macrostructure, while keeping the bioactivity of biomaterials by working at a low temper...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/2/2/025002

    authors: Xu M,Li Y,Suo H,Yan Y,Liu L,Wang Q,Ge Y,Xu Y

    更新日期:2010-06-01 00:00:00

  • In situ modification of cell-culture scaffolds by photocatalytic decomposition of organosilane monolayers.

    abstract::We demonstrate a novel application of TiO2 photocatalysis for modifying the cell affinity of a scaffold surface in a cell-culture environment. An as-deposited octadecyltrichlorosilane self-assembled monolayer (OTS SAM) on TiO2 was found to be hydrophobic and stably adsorbed serum albumins that blocked subsequent adsor...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/6/3/035021

    authors: Yamamoto H,Demura T,Morita M,Kono S,Sekine K,Shinada T,Nakamura S,Tanii T

    更新日期:2014-09-01 00:00:00

  • Towards 4D printed scaffolds for tissue engineering: exploiting 3D shape memory polymers to deliver time-controlled stimulus on cultured cells.

    abstract::Tissue engineering needs innovative solutions to better fit the requirements of a minimally invasive approach, providing at the same time instructive cues to cells. The use of shape memory polyurethane has been investigated by producing 4D scaffolds via additive manufacturing technology. Scaffolds with two different p...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa8114

    authors: Hendrikson WJ,Rouwkema J,Clementi F,van Blitterswijk CA,Farè S,Moroni L

    更新日期:2017-08-02 00:00:00

  • Cell adhesion pattern created by OSTE polymers.

    abstract::Engineering surfaces with functional polymers is a crucial issue in the field of micro/nanofabrication and cell-material interface studies. For many applications of surface patterning, it does not need cells to attach on the whole surface. Herein, we introduce a novel polymer fabrication protocol of off-stoichiometry ...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa669c

    authors: Liu W,Li Y,Ding X

    更新日期:2017-04-24 00:00:00

  • Reliable inkjet printing of chondrocytes and MSCs using reservoir agitation.

    abstract::Drop-on-demand (DoD) inkjet printing has been explored for a range of applications, including those to selectively deposit cellular material, due to the high accuracy and scalability of such systems when compared with alternative bioprinting techniques. Despite this, there remain considerable limitations when handling...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aba2f8

    authors: Dudman JPR,Ferreira AM,Gentile P,Wang X,Ribeiro RDC,Benning M,Dalgarno KW

    更新日期:2020-08-12 00:00:00

  • Importance of endogenous extracellular matrix in biomechanical properties of human skin model.

    abstract::The physical and mechanical properties of cells modulate their behavior such proliferation rate, migration and extracellular matrix remodeling. In order to study cell behavior in a tissue-like environment in vitro, it is of utmost importance to develop biologically and physically relevant 3D cell models. Here, we char...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa6ed5

    authors: Pillet F,Gibot L,Madi M,Rols MP,Dague E

    更新日期:2017-05-11 00:00:00

  • Enhanced mechanical and electrical properties of heteroscaled hydrogels infused with aqueous-dispersible hybrid nanofibers.

    abstract::Despite the widespread use as platforms for various biomedical applications, engineering hydrogels to impart multifunctionality and control physical properties, while closely mimicking the native cellular microenvironment, is still a significant challenge. Herein, nanofibers consisting of hydrophilic and photocrosslin...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab5385

    authors: Kim S,Cha C

    更新日期:2019-12-19 00:00:00

  • Extrusion-based printing of sacrificial Carbopol ink for fabrication of microfluidic devices.

    abstract::Current technologies for manufacturing of microfluidic devices include soft-lithography, wet and dry etching, thermoforming, micro-machining and three-dimensional (3D) printing. Among them, soft-lithography has been the mostly preferred one in medical and pharmaceutical fields due to its ability to generate polydimeth...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab10ae

    authors: Ozbolat V,Dey M,Ayan B,Ozbolat IT

    更新日期:2019-04-16 00:00:00

  • High throughput miniature drug-screening platform using bioprinting technology.

    abstract::In the pharmaceutical industry, new drugs are tested to find appropriate compounds for therapeutic purposes for contemporary diseases. Unfortunately, novel compounds emerge at expensive prices and current target evaluation processes have limited throughput, thus leading to an increase of cost and time for drug develop...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/4/3/035001

    authors: Rodríguez-Dévora JI,Zhang B,Reyna D,Shi ZD,Xu T

    更新日期:2012-09-01 00:00:00

  • Green bioprinting: extrusion-based fabrication of plant cell-laden biopolymer hydrogel scaffolds.

    abstract::Plant cell cultures produce active agents for pharmaceuticals, food and cosmetics. However, up to now process control for plant cell suspension cultures is challenging. A positive impact of cell immobilization, such as encapsulation in hydrogel beads, on secondary metabolites production has been reported for several p...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa8854

    authors: Seidel J,Ahlfeld T,Adolph M,Kümmritz S,Steingroewer J,Krujatz F,Bley T,Gelinsky M,Lode A

    更新日期:2017-11-14 00:00:00

  • A tailored three-dimensionally printable agarose-collagen blend allows encapsulation, spreading, and attachment of human umbilical artery smooth muscle cells.

    abstract::In recent years, novel biofabrication technologies have enabled the rapid manufacture of hydrogel-cell suspensions into tissue-imitating constructs. The development of novel materials for biofabrication still remains a challenge due to a gap between contradicting requirements such as three-dimensional printability and...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/8/2/025011

    authors: Köpf M,Campos DF,Blaeser A,Sen KS,Fischer H

    更新日期:2016-05-20 00:00:00

  • Fabrication of three-dimensional bioplotted hydrogel scaffolds for islets of Langerhans transplantation.

    abstract::In clinical islet transplantation, allogeneic islets of Langerhans are transplanted into the portal vein of patients with type 1 diabetes, enabling the restoration of normoglycemia. After intra-hepatic transplantation several factors are involved in the decay in islet mass and function mainly caused by an immediate bl...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/7/2/025009

    authors: Marchioli G,van Gurp L,van Krieken PP,Stamatialis D,Engelse M,van Blitterswijk CA,Karperien MB,de Koning E,Alblas J,Moroni L,van Apeldoorn AA

    更新日期:2015-05-28 00:00:00

  • Engineered tissue micro-rings fabricated from aggregated fibroblasts and microfibres for a bottom-up tissue engineering approach.

    abstract::Tissue rings with incorporated microscaffolds have been engineered as promising building blocks for constructing biological tubes from the bottom up. However, the microscaffolds available for incorporation are very limited at present. In this paper we provide an efficient strategy to first incorporate microfluidic spu...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab1ee5

    authors: Sun T,Shi Q,Yao Y,Sun J,Wang H,Huang Q,Fukuda T

    更新日期:2019-06-25 00:00:00

  • Direct printing of patterned three-dimensional ultrafine fibrous scaffolds by stable jet electrospinning for cellular ingrowth.

    abstract::Electrospinning has been widely used to produce ultrafine fibers in microscale and nanoscale; however, traditional electrospinning processes are currently beset by troublesome limitations in fabrication of 3D periodic porous structures because of the chaotic nature of the electrospinning jet. Here we report a novel st...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/7/4/045004

    authors: Yuan H,Zhou Q,Li B,Bao M,Lou X,Zhang Y

    更新日期:2015-11-05 00:00:00

  • Direct ink writing of silica-bonded calcite scaffolds from preceramic polymers and fillers.

    abstract::Silica-bonded calcite scaffolds have been successfully 3D-printed by direct ink writing, starting from a paste comprising a silicone polymer and calcite powders, calibrated in order to match a SiO2/CaCO3 weight balance of 35/65. The scaffolds, fabricated with two slightly different geometries, were first cross-linked ...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa6c37

    authors: Fiocco L,Elsayed H,Badocco D,Pastore P,Bellucci D,Cannillo V,Detsch R,Boccaccini AR,Bernardo E

    更新日期:2017-05-11 00:00:00

  • Combined multi-nozzle deposition and freeze casting process to superimpose two porous networks for hierarchical three-dimensional microenvironment.

    abstract::An engineered three-dimensional scaffold with hierarchical porosity and multiple niche microenvironments is produced using a combined multi-nozzle deposition-freeze casting technique. In this paper we present a process to fabricate a scaffold with improved interconnectivity and hierarchical porosity. The scaffold is p...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/6/1/015007

    authors: Snyder JE,Hunger PM,Wang C,Hamid Q,Wegst UG,Sun W

    更新日期:2014-03-01 00:00:00