Markers of inflammation collocate with increased wall stress in human coronary arterial plaque.

Abstract:

:In this study, we hypothesized that spatial relationships exist between the local mechanical environment and inflammatory marker expression in atherosclerotic plaques, and that these relationships are plaque-progression dependent. Histologic cross-sections were collected at regular intervals along the length of diseased human coronary arteries and classified as early, intermediate, advanced, or mature based on their morphological features. For each cross-section, the spatial distribution of stress was determined using a 2D heterogeneous finite element model, and the corresponding distribution of selected inflammatory markers (macrophages, matrix metalloproteinase-1 [MMP-1], and nuclear factor-kappa B [NF-κB]) were determined immunohistochemically. We found a monotonic spatial relationship between mechanical stress and activated NF-κB that was consistent in all stages of plaque progression. We also identified progression-dependent relationships between stress and both macrophage presence and MMP-1 expression. These findings add to our understanding of the role of mechanical stress in stimulating the inflammatory response, and help explain how mechanical factors may regulate complex biological changes in remodeling.

authors

Hallow KM,Taylor WR,Rachev A,Vito RP

doi

10.1007/s10237-009-0151-8

subject

Has Abstract

pub_date

2009-12-01 00:00:00

pages

473-86

issue

6

eissn

1617-7959

issn

1617-7940

journal_volume

8

pub_type

杂志文章
  • Modelling secondary lymphatic valves with a flexible vessel wall: how geometry and material properties combine to provide function.

    abstract::A three-dimensional finite-element fluid/structure interaction model of an intravascular lymphatic valve was constructed, and its properties were investigated under both favourable and adverse pressure differences, simulating valve opening and valve closure, respectively. The shear modulus of the neo-Hookean material ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-020-01325-4

    authors: Bertram CD

    更新日期:2020-12-01 00:00:00

  • Simulated tissue growth for 3D printed scaffolds.

    abstract::Experiments have demonstrated biological tissues grow by mechanically sensing their localized curvature, therefore making geometry a key consideration for tissue scaffold design. We developed a simulation approach for modeling tissue growth on beam-based geometries of repeating unit cells, with four lattice topologies...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1040-9

    authors: Egan PF,Shea KA,Ferguson SJ

    更新日期:2018-10-01 00:00:00

  • A microfluidic device with spatiotemporal wall shear stress and ATP signals to investigate the intracellular calcium dynamics in vascular endothelial cells.

    abstract::Intracellular calcium dynamics plays an important role in the regulation of vascular endothelial cellular functions. In order to probe the intracellular calcium dynamic response under synergistic effect of wall shear stress (WSS) and adenosine triphosphate (ATP) signals, a novel microfluidic device, which provides the...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1076-x

    authors: Chen ZZ,Yuan WM,Xiang C,Zeng DP,Liu B,Qin KR

    更新日期:2019-02-01 00:00:00

  • Analysis of mechanical parameters on the thromboembolism using a patient-specific computational model.

    abstract::Ischemic stroke is a major cause of death and long-term disabilities worldwide. In this paper, we aim to represent a comprehensive simulation of the motion of emboli through cerebrovascular network within patient-specific computational model. The model consists of major arteries of the circle of Willis reconstructed f...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0762-9

    authors: Khodaee F,Vahidi B,Fatouraee N

    更新日期:2016-10-01 00:00:00

  • Enhanced cancer cell invasion caused by fibroblasts when fluid flow is present.

    abstract::It has been demonstrated that interstitial fluid (IF) flow can play a crucial role in tumor cell progression. Swartz and collaborators (Cancer Cell 11: 526-538, Shields et al. 2007) demonstrated that cells that secrete the lymphoid homing chemokines CCL21/CCL19 and express their receptor CCR7 could use flow to bias th...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01128-2

    authors: Urdal J,Waldeland JO,Evje S

    更新日期:2019-08-01 00:00:00

  • What factors determine the number of nonmuscle myosin II in the sarcomeric unit of stress fibers?

    abstract::Actin stress fibers (SFs), a contractile apparatus in nonmuscle cells, possess a contractile unit that is apparently similar to the sarcomere of myofibrils in muscles. The function of SFs has thus often been addressed based on well-characterized properties of muscles. However, unlike the fixed number of myosin molecul...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-020-01375-8

    authors: Saito T,Huang W,Matsui TS,Kuragano M,Takahashi M,Deguchi S

    更新日期:2020-08-10 00:00:00

  • A hybrid bioregulatory model of angiogenesis during bone fracture healing.

    abstract::Bone fracture healing is a complex process in which angiogenesis or the development of a blood vessel network plays a crucial role. In this paper, a mathematical model is presented that simulates the biological aspects of fracture healing including the formation of individual blood vessels. The model consists of parti...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-010-0241-7

    authors: Peiffer V,Gerisch A,Vandepitte D,Van Oosterwyck H,Geris L

    更新日期:2011-06-01 00:00:00

  • Deformation of human red blood cells in extensional flow through a hyperbolic contraction.

    abstract::Flow-induced damage to red blood cells has been an issue of considerable importance since the introduction of the first cardiovascular devices. Early blood damage prediction models were based on measurements of damage by shear stress only. Subsequently, these models were extrapolated to include other components of the...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01208-3

    authors: Faghih MM,Sharp MK

    更新日期:2020-02-01 00:00:00

  • Flow plate separation of cells based on elastic properties: a computational study.

    abstract::Medical studies have consistently shown that the best defense against cancer is early detection. Due to this, many efforts have been made to develop methods of screening patient blood quickly and cheaply. These methods range from separation via differences in size, electrostatic potential, chemical potential, antibody...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1093-9

    authors: Becton M,Averett RD,Wang X

    更新日期:2019-04-01 00:00:00

  • A chemo-mechanical constitutive model for transiently cross-linked actin networks and a theoretical assessment of their viscoelastic behaviour.

    abstract::Biological materials can undergo large deformations and also show viscoelastic behaviour. One such material is the network of actin filaments found in biological cells, giving the cell much of its mechanical stiffness. A theory for predicting the relaxation behaviour of actin networks cross-linked with the cross-linke...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-012-0406-7

    authors: Fallqvist B,Kroon M

    更新日期:2013-04-01 00:00:00

  • Modeling active muscle contraction in mitral valve leaflets during systole: a first approach.

    abstract::The present study addresses the effect of muscle activation contributions to mitral valve leaflet response during systole. State-of-art passive hyperelastic material modeling is employed in combination with a simple active stress part. Fiber families are assumed in the leaflets: one defined by the collagen and one def...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-010-0215-9

    authors: Skallerud B,Prot V,Nordrum IS

    更新日期:2011-02-01 00:00:00

  • A computational model that predicts reverse growth in response to mechanical unloading.

    abstract::Ventricular growth is widely considered to be an important feature in the adverse progression of heart diseases, whereas reverse ventricular growth (or reverse remodeling) is often considered to be a favorable response to clinical intervention. In recent years, a number of theoretical models have been proposed to mode...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-014-0598-0

    authors: Lee LC,Genet M,Acevedo-Bolton G,Ordovas K,Guccione JM,Kuhl E

    更新日期:2015-04-01 00:00:00

  • Mean arterial pressure nonlinearity in an elastic circulatory system subjected to different hematocrits.

    abstract::The level of hematocrit (Hct) is known to affect mean arterial pressure (MAP) by influencing blood viscosity. In the healthy population, an increase in Hct (and corresponding increase in viscosity) tends to raise MAP. However, data from a clinical study of type 2 diabetic patients indicate that this relationship is no...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-010-0258-y

    authors: Branigan T,Bolster D,Vázquez BY,Intaglietta M,Tartakovsky DM

    更新日期:2011-07-01 00:00:00

  • Experimental measurement of dynamic fluid shear stress on the ventricular surface of the aortic valve leaflet.

    abstract::Aortic valve (AV) calcification is a highly prevalent disease with serious impact on mortality and morbidity. The exact causes and mechanisms of AV calcification are unclear, although previous studies suggest that mechanical forces play a role. It has been clinically demonstrated that calcification preferentially occu...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-011-0306-2

    authors: Yap CH,Saikrishnan N,Yoganathan AP

    更新日期:2012-01-01 00:00:00

  • A mathematical model for bone tissue regeneration inside a specific type of scaffold.

    abstract::Bone tissue regeneration using scaffolds is receiving an increasing interest in orthopedic surgery and tissue engineering applications. In this study, we present the geometrical characterization of a specific family of scaffolds based on a face cubic centered (FCC) arrangement of empty pores leading to analytical form...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-007-0089-7

    authors: Sanz-Herrera JA,Garcia-Aznar JM,Doblare M

    更新日期:2008-10-01 00:00:00

  • A multiscale mechanobiological model of bone remodelling predicts site-specific bone loss in the femur during osteoporosis and mechanical disuse.

    abstract::We propose a multiscale mechanobiological model of bone remodelling to investigate the site-specific evolution of bone volume fraction across the midshaft of a femur. The model includes hormonal regulation and biochemical coupling of bone cell populations, the influence of the microstructure on bone turnover rate, and...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-015-0705-x

    authors: Lerebours C,Buenzli PR,Scheiner S,Pivonka P

    更新日期:2016-02-01 00:00:00

  • Arterial pulse attenuation prediction using the decaying rate of a pressure wave in a viscoelastic material model.

    abstract::The present study examines the possibility of attenuating blood pulses by means of introducing prosthetic viscoelastic materials able to absorb energy and damp such pulses. Vascular prostheses made of polymeric materials modify the mechanical properties of blood vessels. The effect of these materials on the blood puls...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-017-0980-9

    authors: Menacho J,Rotllant L,Molins JJ,Reyes G,García-Granada AA,Balcells M,Martorell J

    更新日期:2018-04-01 00:00:00

  • Relationship between apical membrane elasticity and stress fiber organization in fibroblasts analyzed by fluorescence and atomic force microscopy.

    abstract::To investigate the relationship between cellular microelasticity and the structural features of cytoskeletons (CSKs), a microindentation test for apical cell membranes and observation of the spatio-distribution of actin CSKs of fibroblasts were performed by fluorescence and atomic force microscopy (FM/AFM). The indent...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-006-0048-8

    authors: Kidoaki S,Matsuda T,Yoshikawa K

    更新日期:2006-11-01 00:00:00

  • An inverse modeling approach for semilunar heart valve leaflet mechanics: exploitation of tissue structure.

    abstract::Determining the biomechanical behavior of heart valve leaflet tissues in a noninvasive manner remains an important clinical goal. While advances in 3D imaging modalities have made in vivo valve geometric data available, optimal methods to exploit such information in order to obtain functional information remain to be ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-015-0732-7

    authors: Aggarwal A,Sacks MS

    更新日期:2016-08-01 00:00:00

  • Patient-specific predictions of aneurysm growth and remodeling in the ascending thoracic aorta using the homogenized constrained mixture model.

    abstract::In its permanent quest of mechanobiological homeostasis, our vasculature significantly adapts across multiple length and timescales in various physiological and pathological conditions. Computational modeling of vascular growth and remodeling (G&R) has significantly improved our insights into the mechanobiological pro...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01184-8

    authors: Mousavi SJ,Farzaneh S,Avril S

    更新日期:2019-12-01 00:00:00

  • Experimental analysis of the transverse mechanical behaviour of annulus fibrosus tissue.

    abstract::Uniaxial tensile and relaxation tests were carried out on annulus fibrosus samples carved out in the circumferential direction. Images were shot perpendicularly to the loading direction. Digital image correlation techniques accurately measured the evolution of full displacement fields in both transverse directions: pl...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-013-0524-x

    authors: Baldit A,Ambard D,Cherblanc F,Royer P

    更新日期:2014-06-01 00:00:00

  • Stochastic multiscale modelling of cortical bone elasticity based on high-resolution imaging.

    abstract::Accurate and reliable assessment of bone quality requires predictive methods which could probe bone microstructure and provide information on bone mechanical properties. Multiscale modelling and simulation represent a fast and powerful way to predict bone mechanical properties based on experimental information on bone...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-015-0695-8

    authors: Sansalone V,Gagliardi D,Desceliers C,Bousson V,Laredo JD,Peyrin F,Haïat G,Naili S

    更新日期:2016-02-01 00:00:00

  • Force fluctuation on pulling a ssDNA from a carbon nanotube.

    abstract::It was reported that a single-strand DNA (ssDNA) could be inbreathed spontaneously into a carbon nanotube (CNT). In this work, the complementary process, i.e. pulling a piece of ssDNA out of a single-walled (SW) CNT, is simulated using molecular dynamic methods. The pulling force is found to fluctuate around a plateau...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-010-0228-4

    authors: Li Z,Yang W

    更新日期:2011-04-01 00:00:00

  • Modeling left ventricular dynamics with characteristic deformation modes.

    abstract::A computationally efficient method is described for simulating the dynamics of the left ventricle (LV) in three dimensions. LV motion is represented as a combination of a limited number of deformation modes, chosen to represent observed cardiac motions while conserving volume in the LV wall. The contribution of each m...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01168-8

    authors: Hong BD,Moulton MJ,Secomb TW

    更新日期:2019-12-01 00:00:00

  • Computational neurotrauma--design, simulation, and analysis of controlled cortical impact model.

    abstract::The controlled cortical impact (CCI) model is widely used in many laboratories to study traumatic brain injury (TBI). Although external impact parameters during CCI tests could be clearly defined, little is known about the internal tissue-level mechanical responses of the rat brain. Furthermore, the external impact pa...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-010-0212-z

    authors: Mao H,Yang KH,King AI,Yang K

    更新日期:2010-12-01 00:00:00

  • Wing cross veins: an efficient biomechanical strategy to mitigate fatigue failure of insect cuticle.

    abstract::Locust wings are able to sustain millions of cycles of mechanical loading during the lifetime of the insect. Previous studies have shown that cross veins play an important role in delaying crack propagation in the wings. Do cross veins thus also influence the fatigue behaviour of the wings? Since many important fatigu...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-017-0930-6

    authors: Rajabi H,Bazargan P,Pourbabaei A,Eshghi S,Darvizeh A,Gorb SN,Taylor D,Dirks JH

    更新日期:2017-12-01 00:00:00

  • Introducing the pro-coagulant contact system in the numerical assessment of device-related thrombosis.

    abstract::Thrombosis is a major concern in blood-coated medical devices. Contact activation, which is the initial part of the coagulation cascade in device-related thrombosis, is not considered in current thrombus formation models. In the present study, pro-coagulant reactions including the contact activation system are coupled...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-017-0994-3

    authors: Méndez Rojano R,Mendez S,Nicoud F

    更新日期:2018-06-01 00:00:00

  • A simulation study on the significant nanomechanical heterogeneous properties of collagen.

    abstract::Nanomechanics of individual collagen fibrils govern the mechanical behavior of the majority of connective tissues, yet the current models lack significant details. Majority of the current models assume a rod-shape molecule with homogenous mechanical properties. Recent X-ray crystallography revealed significantly diffe...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-014-0615-3

    authors: Zhou Z,Minary-Jolandan M,Qian D

    更新日期:2015-06-01 00:00:00

  • Valve-related modes of pump failure in collecting lymphatics: numerical and experimental investigation.

    abstract::Lymph is transported along collecting lymphatic vessels by intrinsic and extrinsic pumping. The walls have muscle of a type intermediate between blood-vascular smooth muscle and myocardium; a contracting segment between two valves (a lymphangion) constitutes a pump. This intrinsic mechanism is investigated ex vivo in ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-017-0933-3

    authors: Bertram CD,Macaskill C,Davis MJ,Moore JE Jr

    更新日期:2017-12-01 00:00:00

  • White matter tract-oriented deformation predicts traumatic axonal brain injury and reveals rotational direction-specific vulnerabilities.

    abstract::A systematic correlation between finite element models (FEMs) and histopathology is needed to define deformation thresholds associated with traumatic brain injury (TBI). In this study, a FEM of a transected piglet brain was used to reverse engineer the range of optimal shear moduli for infant (5 days old, 553-658 Pa) ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-014-0643-z

    authors: Sullivan S,Eucker SA,Gabrieli D,Bradfield C,Coats B,Maltese MR,Lee J,Smith C,Margulies SS

    更新日期:2015-08-01 00:00:00