How flexibility and eardrum cone shape affect sound conduction in single-ossicle ears: a dynamic model study of the chicken middle ear.

Abstract:

:It is believed that non-mammals have poor hearing at high frequencies because the sound-conduction performance of their single-ossicle middle ears declines above a certain frequency. To better understand this behavior, a dynamic three-dimensional finite-element model of the chicken middle ear was constructed. The effect of changing the flexibility of the cartilaginous extracolumella on middle-ear sound conduction was simulated from 0.125 to 8 kHz, and the influence of the outward-bulging cone shape of the eardrum was studied by altering the depth and orientation of the eardrum cone in the model. It was found that extracolumella flexibility increases the middle-ear pressure gain at low frequencies due to an enhancement of eardrum motion, but it decreases the pressure gain at high frequencies as the bony columella becomes more resistant to extracolumella movement. Similar to the inward-pointing cone shape of the mammalian eardrum, it was shown that the outward-pointing cone shape of the chicken eardrum enhances the middle-ear pressure gain compared to a flat eardrum shape. When the outward-pointing eardrum was replaced by an inward-pointing eardrum, the pressure gain decreased slightly over the entire frequency range. This decrease was assigned to an increase in bending behavior of the extracolumella and a reduction in piston-like columella motion in the model with an inward-pointing eardrum. Possibly, the single-ossicle middle ear of birds favors an outward-pointing eardrum over an inward-pointing one as it preserves a straight angle between the columella and extrastapedius and a right angle between the columella and suprastapedius, which provides the optimal transmission.

authors

Muyshondt PGG,Dirckx JJJ

doi

10.1007/s10237-019-01207-4

subject

Has Abstract

pub_date

2020-02-01 00:00:00

pages

233-249

issue

1

eissn

1617-7959

issn

1617-7940

pii

10.1007/s10237-019-01207-4

journal_volume

19

pub_type

杂志文章
  • Study of the combined effects of PTH treatment and mechanical loading in postmenopausal osteoporosis using a new mechanistic PK-PD model.

    abstract::One of only a few approved and available anabolic treatments for severe osteoporosis is daily injections of PTH (1-34). This drug has a specific dual action which can act either anabolically or catabolically depending on the type of administration, i.e. intermittent or continuous, respectively. In this paper, we prese...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-020-01307-6

    authors: Lavaill M,Trichilo S,Scheiner S,Forwood MR,Cooper DML,Pivonka P

    更新日期:2020-10-01 00:00:00

  • Inclusion-induced boundary layers in lipid vesicles.

    abstract::The equilibrium shapes of lipid vesicles are perturbed by rigid inclusions. In a two-dimensional vesicle, that may also model a cylindrically elongated tubule, the shape modifications can be determined analytically, and turn out to be significant even far from the inclusion. On the contrary, previous numerical work ha...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-006-0066-6

    authors: Biscari P,Napoli G

    更新日期:2007-09-01 00:00:00

  • On the mechanics of myopia and its influence on retinal detachment.

    abstract::A mechanics-based mathematical model of retinal detachment due to the geometric changes of the eye associated with the evolution of myopia is developed. This includes deformation of the retina due to biological growth of the retina, as well as elastic deformation imposed on the retina by the myopic change in shape of ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01234-1

    authors: Lakawicz JM,Bottega WJ,Fine HF,Prenner JL

    更新日期:2020-04-01 00:00:00

  • Contraction of collecting lymphatics: organization of pressure-dependent rate for multiple lymphangions.

    abstract::The paper describes the extension of a previously developed model of pressure-dependent contraction rate to the case of multiple lymphangions. Mechanical factors are key modulators of active lymphatic pumping. As part of the evolution of our lumped-parameter model to match experimental findings, we have designed an al...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1042-7

    authors: Bertram CD,Macaskill C,Davis MJ,Moore JE Jr

    更新日期:2018-10-01 00:00:00

  • A computational model that predicts reverse growth in response to mechanical unloading.

    abstract::Ventricular growth is widely considered to be an important feature in the adverse progression of heart diseases, whereas reverse ventricular growth (or reverse remodeling) is often considered to be a favorable response to clinical intervention. In recent years, a number of theoretical models have been proposed to mode...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-014-0598-0

    authors: Lee LC,Genet M,Acevedo-Bolton G,Ordovas K,Guccione JM,Kuhl E

    更新日期:2015-04-01 00:00:00

  • Stochastic multiscale modelling of cortical bone elasticity based on high-resolution imaging.

    abstract::Accurate and reliable assessment of bone quality requires predictive methods which could probe bone microstructure and provide information on bone mechanical properties. Multiscale modelling and simulation represent a fast and powerful way to predict bone mechanical properties based on experimental information on bone...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-015-0695-8

    authors: Sansalone V,Gagliardi D,Desceliers C,Bousson V,Laredo JD,Peyrin F,Haïat G,Naili S

    更新日期:2016-02-01 00:00:00

  • Efficient materially nonlinear [Formula: see text]FE solver for simulations of trabecular bone failure.

    abstract::An efficient solver for large-scale linear [Formula: see text] simulations was extended for nonlinear material behavior. The material model included damage-based tissue degradation and fracture. The new framework was applied to 20 trabecular biopsies with a mesh resolution of [Formula: see text]. Suitable material par...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01254-x

    authors: Stipsitz M,Zysset PK,Pahr DH

    更新日期:2020-06-01 00:00:00

  • A resolved two-way coupled CFD/6-DOF approach for predicting embolus transport and the embolus-trapping efficiency of IVC filters.

    abstract::Inferior vena cava (IVC) filters are medical devices designed to provide a mechanical barrier to the passage of emboli from the deep veins of the legs to the heart and lungs. Despite decades of development and clinical use, IVC filters still fail to prevent the passage of all hazardous emboli. The objective of this st...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0857-3

    authors: Aycock KI,Campbell RL,Manning KB,Craven BA

    更新日期:2017-06-01 00:00:00

  • The effect of collagen degradation on chondrocyte volume and morphology in bovine articular cartilage following a hypotonic challenge.

    abstract::Collagen degradation is one of the early signs of osteoarthritis. It is not known how collagen degradation affects chondrocyte volume and morphology. Thus, the aim of this study was to investigate the effect of enzymatically induced collagen degradation on cell volume and shape changes in articular cartilage after a h...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-012-0409-4

    authors: Turunen SM,Lammi MJ,Saarakkala S,Han SK,Herzog W,Tanska P,Korhonen RK

    更新日期:2013-06-01 00:00:00

  • Small scale membrane mechanics.

    abstract::Large scale changes to lipid bilayer shapes are well represented by the Helfrich model. However, there are membrane processes that take place at smaller length scales that this model cannot address. In this work, we present a one-dimensional continuum model that captures the mechanics of the lipid bilayer membrane at ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-013-0528-6

    authors: Rangamani P,Benjamini A,Agrawal A,Smit B,Steigmann DJ,Oster G

    更新日期:2014-08-01 00:00:00

  • Statistical shape modelling of the first carpometacarpal joint reveals high variation in morphology.

    abstract::The first carpometacarpal (CMC) joint, located at the base of the thumb and formed by the junction between the first metacarpal and trapezium, is a common site for osteoarthritis of the hand. The shape of both the first metacarpal and trapezium contributes to the intrinsic bony stability of the joint, and variability ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01257-8

    authors: Rusli WMR,Kedgley AE

    更新日期:2020-08-01 00:00:00

  • Simulation of multi-stage nonlinear bone remodeling induced by fixed partial dentures of different configurations: a comparative clinical and numerical study.

    abstract::This paper aimed to develop a clinically validated bone remodeling algorithm by integrating bone's dynamic properties in a multi-stage fashion based on a four-year clinical follow-up of implant treatment. The configurational effects of fixed partial dentures (FPDs) were explored using a multi-stage remodeling rule. Th...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0826-x

    authors: Liao Z,Yoda N,Chen J,Zheng K,Sasaki K,Swain MV,Li Q

    更新日期:2017-04-01 00:00:00

  • Analysis of mechanical parameters on the thromboembolism using a patient-specific computational model.

    abstract::Ischemic stroke is a major cause of death and long-term disabilities worldwide. In this paper, we aim to represent a comprehensive simulation of the motion of emboli through cerebrovascular network within patient-specific computational model. The model consists of major arteries of the circle of Willis reconstructed f...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0762-9

    authors: Khodaee F,Vahidi B,Fatouraee N

    更新日期:2016-10-01 00:00:00

  • The mechanical behaviour of chondrocytes predicted with a micro-structural model of articular cartilage.

    abstract::The integrity of articular cartilage depends on the proper functioning and mechanical stimulation of chondrocytes, the cells that synthesize extracellular matrix and maintain tissue health. The biosynthetic activity of chondrocytes is influenced by genetic factors, environmental influences, extracellular matrix compos...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-006-0016-3

    authors: Han SK,Federico S,Grillo A,Giaquinta G,Herzog W

    更新日期:2007-04-01 00:00:00

  • Creep and stress relaxation of human red cell membrane.

    abstract::In contrast to most mechanical properties of the red cell, experimental information on stress relaxation (SR) of the membrane skeleton is scarce. On the other hand, many postulates or assumptions as to the value of the characteristic time of SR [Formula: see text] can be found in the literature. Here, an experiment is...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0813-2

    authors: Fischer TM

    更新日期:2017-02-01 00:00:00

  • Multi-factor decision-making strategy for better coronary plaque burden increase prediction: a patient-specific 3D FSI study using IVUS follow-up data.

    abstract::Plaque progression and vulnerability are influenced by many risk factors. Our goal is to find a simple method to combine multiple risk factors for better plaque development prediction. Intravascular ultrasound data at baseline and follow-up were acquired from nine patients, and fluid-structure interaction models were ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01143-3

    authors: Wang L,Tang D,Maehara A,Molony D,Zheng J,Samady H,Wu Z,Lu W,Zhu J,Ma G,Giddens DP,Stone GW,Mintz GS

    更新日期:2019-10-01 00:00:00

  • Force fluctuation on pulling a ssDNA from a carbon nanotube.

    abstract::It was reported that a single-strand DNA (ssDNA) could be inbreathed spontaneously into a carbon nanotube (CNT). In this work, the complementary process, i.e. pulling a piece of ssDNA out of a single-walled (SW) CNT, is simulated using molecular dynamic methods. The pulling force is found to fluctuate around a plateau...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-010-0228-4

    authors: Li Z,Yang W

    更新日期:2011-04-01 00:00:00

  • A mechanical model of posterior vitreous detachment and generation of vitreoretinal tractions.

    abstract::We propose a mechanical model of generation of vitreoretinal tractions in the presence of posterior vitreous detachment (PVD). PVD is a common occurrence with aging, and it consists in the separation of the vitreous body from the retina at the back pole of the eye, due to progressive shrinking of the vitreous gel. Dur...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-020-01360-1

    authors: Di Michele F,Tatone A,Romano MR,Repetto R

    更新日期:2020-12-01 00:00:00

  • Modeling left ventricular dynamics with characteristic deformation modes.

    abstract::A computationally efficient method is described for simulating the dynamics of the left ventricle (LV) in three dimensions. LV motion is represented as a combination of a limited number of deformation modes, chosen to represent observed cardiac motions while conserving volume in the LV wall. The contribution of each m...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01168-8

    authors: Hong BD,Moulton MJ,Secomb TW

    更新日期:2019-12-01 00:00:00

  • Impact of calcifications on patient-specific wall stress analysis of abdominal aortic aneurysms.

    abstract::As a degenerative and inflammatory desease of elderly patients, about 80% of abdominal aortic aneurysms (AAA) show considerable wall calcification. Effect of calcifications on computational wall stress analyses of AAAs has been rarely treated in literature so far. Calcifications are heterogeneously distributed, non-fi...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-010-0191-0

    authors: Maier A,Gee MW,Reeps C,Eckstein HH,Wall WA

    更新日期:2010-10-01 00:00:00

  • Modeling active muscle contraction in mitral valve leaflets during systole: a first approach.

    abstract::The present study addresses the effect of muscle activation contributions to mitral valve leaflet response during systole. State-of-art passive hyperelastic material modeling is employed in combination with a simple active stress part. Fiber families are assumed in the leaflets: one defined by the collagen and one def...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-010-0215-9

    authors: Skallerud B,Prot V,Nordrum IS

    更新日期:2011-02-01 00:00:00

  • Nonlinear viscoelastic, thermodynamically consistent, models for biological soft tissue.

    abstract::The mechanical behavior of most biological soft tissue is nonlinear viscoelastic rather than elastic. Many of the models previously proposed for soft tissue involve ad hoc systems of springs and dashpots or require measurement of time-dependent constitutive coefficient functions. The model proposed here is a system of...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-004-0055-6

    authors: Haslach HW Jr

    更新日期:2005-03-01 00:00:00

  • A novel perspective on neuron study: damaging and promoting effects in different neurons induced by mechanical stress.

    abstract::A growing volume of experimental evidence demonstrates that mechanical stress plays a significant role in growth, proliferation, apoptosis, gene expression, electrophysiological properties and many other aspects of neurons. In this review, first, the mechanical microenvironment and properties of neurons under in vivo ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章,评审

    doi:10.1007/s10237-015-0743-4

    authors: Wang Y,Wang W,Li Z,Hao S,Wang B

    更新日期:2016-10-01 00:00:00

  • Time-dependent behavior of cartilage surrounding a metal implant for full-thickness cartilage defects of various sizes: a finite element study.

    abstract::Recently, physiological and biomechanical studies on animal models with metal implants filling full-thickness cartilage defects have resulted in good clinical outcomes. The knowledge of the time-dependent macroscopic behavior of cartilage surrounding the metal implant is essential for understanding the joint function ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-011-0346-7

    authors: Manda K,Eriksson A

    更新日期:2012-05-01 00:00:00

  • A mathematical model for bone tissue regeneration inside a specific type of scaffold.

    abstract::Bone tissue regeneration using scaffolds is receiving an increasing interest in orthopedic surgery and tissue engineering applications. In this study, we present the geometrical characterization of a specific family of scaffolds based on a face cubic centered (FCC) arrangement of empty pores leading to analytical form...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-007-0089-7

    authors: Sanz-Herrera JA,Garcia-Aznar JM,Doblare M

    更新日期:2008-10-01 00:00:00

  • Multi-view stereo analysis reveals anisotropy of prestrain, deformation, and growth in living skin.

    abstract::Skin expansion delivers newly grown skin that maintains histological and mechanical features of the original tissue. Although it is the gold standard for cutaneous defect correction today, the underlying mechanisms remain poorly understood. Here we present a novel technique to quantify anisotropic prestrain, deformati...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-015-0650-8

    authors: Buganza Tepole A,Gart M,Purnell CA,Gosain AK,Kuhl E

    更新日期:2015-10-01 00:00:00

  • Experimental characterization of rupture in human aortic aneurysms using a full-field measurement technique.

    abstract::The present study aims at investigating biomechanical failure behaviour of human aneurismal aortic tissues so as to diagnose the rupture risk of aneurysms more accurately. An inflation test is performed on aneurismal aortic tissues up to failure and full-field measurements are achieved using stereo digital image corre...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-011-0356-5

    authors: Kim JH,Avril S,Duprey A,Favre JP

    更新日期:2012-07-01 00:00:00

  • Finite element analysis of the pressure-induced deformation of Schlemm's canal endothelial cells.

    abstract::The endothelial cells lining the inner wall of Schlemm's canal (SC) in the eye are relatively unique in that they support a basal-to-apical pressure gradient that causes these cells to deform, creating giant vacuoles and transendothelial pores through which the aqueous humor flows. Glaucoma is associated with an incre...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-014-0640-2

    authors: Vargas-Pinto R,Lai J,Gong H,Ethier CR,Johnson M

    更新日期:2015-08-01 00:00:00

  • Mathematical modelling of corneal swelling.

    abstract::This paper presents a differential model of the corneal transport system capable of modelling thickness changes in response to osmotic perturbations applied to either limiting membrane. The work is directed towards understanding corneal behaviour in vivo. The model considers the coupled viscous flows within the cornea...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-004-0054-7

    authors: Li LY,Tighe BJ,Ruberti JW

    更新日期:2004-11-01 00:00:00

  • Prediction of cell growth rate over scaffold strands inside a perfusion bioreactor.

    abstract::Mathematical and computational modeling of the dynamic process where tissue scaffolds are cultured in perfusion bioreactors is able to provide insight into the cell and tissue growth which can facilitate the design of tissue scaffolds and selection of optimal operating conditions. To date, a resolved-scale simulation ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-014-0606-4

    authors: Hossain MS,Bergstrom DJ,Chen XB

    更新日期:2015-04-01 00:00:00