Statistical shape modelling of the first carpometacarpal joint reveals high variation in morphology.

Abstract:

:The first carpometacarpal (CMC) joint, located at the base of the thumb and formed by the junction between the first metacarpal and trapezium, is a common site for osteoarthritis of the hand. The shape of both the first metacarpal and trapezium contributes to the intrinsic bony stability of the joint, and variability in the morphology of both these bones can affect the joint's function. The objectives of this study were to quantify the morphological variation in the complete metacarpal and trapezium and determine any correlation between anatomical features of these two components of the first CMC joint. A multi-object statistical shape modelling pipeline, consisting of scaling, hierarchical rigid registration, non-rigid registration and projection pursuit principal component analysis, was implemented. Four anatomical measures were quantified from the shape model, namely the first metacarpal articular tilt and torsion angles and the trapezium length and width. Variations in the first metacarpal articular tilt angle (- 6.3° < θ < 12.3°) and trapezium width (10.28 mm < [Formula: see text] < 11.13 mm) were identified in the first principal component. In the second principal component, variations in the first metacarpal torsion angle (0.2° < α < 14.2°), first metacarpal articular tilt angle (1.0° < θ < 6.4°) and trapezium length (12.25 mm < [Formula: see text] < 17.33 mm) were determined. Due to their implications for joint stability, the first metacarpal articular tilt angle and trapezium width may be important anatomical features which could be used to advance early detection and treatment of first CMC joint osteoarthritis.

authors

Rusli WMR,Kedgley AE

doi

10.1007/s10237-019-01257-8

subject

Has Abstract

pub_date

2020-08-01 00:00:00

pages

1203-1210

issue

4

eissn

1617-7959

issn

1617-7940

pii

10.1007/s10237-019-01257-8

journal_volume

19

pub_type

杂志文章
  • Creep and stress relaxation of human red cell membrane.

    abstract::In contrast to most mechanical properties of the red cell, experimental information on stress relaxation (SR) of the membrane skeleton is scarce. On the other hand, many postulates or assumptions as to the value of the characteristic time of SR [Formula: see text] can be found in the literature. Here, an experiment is...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0813-2

    authors: Fischer TM

    更新日期:2017-02-01 00:00:00

  • Effects of pH on transport properties of articular cartilages.

    abstract::Articular cartilages swell and shrink depending on the ionic strength of the electrolyte they are in contact with. This electro-chemo-mechanical coupling is due to the presence of fixed electrical charges on proteoglycans (PGs). In addition, at nonphysiological pH, collagen fibers become charged. Therefore, variation ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-009-0158-1

    authors: Loret B,Simões FM

    更新日期:2010-02-01 00:00:00

  • How flexibility and eardrum cone shape affect sound conduction in single-ossicle ears: a dynamic model study of the chicken middle ear.

    abstract::It is believed that non-mammals have poor hearing at high frequencies because the sound-conduction performance of their single-ossicle middle ears declines above a certain frequency. To better understand this behavior, a dynamic three-dimensional finite-element model of the chicken middle ear was constructed. The effe...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01207-4

    authors: Muyshondt PGG,Dirckx JJJ

    更新日期:2020-02-01 00:00:00

  • Impact of calcifications on patient-specific wall stress analysis of abdominal aortic aneurysms.

    abstract::As a degenerative and inflammatory desease of elderly patients, about 80% of abdominal aortic aneurysms (AAA) show considerable wall calcification. Effect of calcifications on computational wall stress analyses of AAAs has been rarely treated in literature so far. Calcifications are heterogeneously distributed, non-fi...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-010-0191-0

    authors: Maier A,Gee MW,Reeps C,Eckstein HH,Wall WA

    更新日期:2010-10-01 00:00:00

  • Simulation of multi-stage nonlinear bone remodeling induced by fixed partial dentures of different configurations: a comparative clinical and numerical study.

    abstract::This paper aimed to develop a clinically validated bone remodeling algorithm by integrating bone's dynamic properties in a multi-stage fashion based on a four-year clinical follow-up of implant treatment. The configurational effects of fixed partial dentures (FPDs) were explored using a multi-stage remodeling rule. Th...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0826-x

    authors: Liao Z,Yoda N,Chen J,Zheng K,Sasaki K,Swain MV,Li Q

    更新日期:2017-04-01 00:00:00

  • Intra-articular contact stress distributions at the ankle throughout stance phase-patient-specific finite element analysis as a metric of degeneration propensity.

    abstract::A contact finite element (FE) formulation is introduced, amenable to patient-specific analysis of cumulative cartilage mechano-stimulus attributable to habitual functional activity. CT scans of individual human ankles are segmented to delineate bony margins. Each bone surface is projected outward to create a second su...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-006-0025-2

    authors: Anderson DD,Goldsworthy JK,Shivanna K,Grosland NM,Pedersen DR,Thomas TP,Tochigi Y,Marsh JL,Brown TD

    更新日期:2006-06-01 00:00:00

  • Assessment of boundary conditions for CFD simulation in human carotid artery.

    abstract::Computational fluid dynamics (CFD) is an increasingly used method for investigation of hemodynamic parameters and their alterations under pathological conditions, which are important indicators for diagnosis of cardiovascular disease. In hemodynamic simulation models, the employment of appropriate boundary conditions ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1045-4

    authors: Xu P,Liu X,Zhang H,Ghista D,Zhang D,Shi C,Huang W

    更新日期:2018-12-01 00:00:00

  • Small scale membrane mechanics.

    abstract::Large scale changes to lipid bilayer shapes are well represented by the Helfrich model. However, there are membrane processes that take place at smaller length scales that this model cannot address. In this work, we present a one-dimensional continuum model that captures the mechanics of the lipid bilayer membrane at ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-013-0528-6

    authors: Rangamani P,Benjamini A,Agrawal A,Smit B,Steigmann DJ,Oster G

    更新日期:2014-08-01 00:00:00

  • Urethral lumen occlusion by artificial sphincteric devices: a computational biomechanics approach.

    abstract::The action induced by artificial sphincteric devices to provide urinary continence is related to the problem of evaluating the interaction between the occlusive cuff and the urethral duct. The intensity and distribution of the force induced within the region of application determine a different occlusion process and p...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-017-0897-3

    authors: Natali AN,Carniel EL,Fontanella CG,Todros S,De Benedictis GM,Cerruto MA,Artibani W

    更新日期:2017-08-01 00:00:00

  • Influence of power-law rheology on cell injury during microbubble flows.

    abstract::The reopening of fluid-occluded pulmonary airways generates microbubble flows which impart complex hydrodynamic stresses to the epithelial cells lining airway walls. In this study we used boundary element solutions and finite element techniques to investigate how cell rheology influences the deformation and injury of ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-009-0175-0

    authors: Dailey HL,Ghadiali SN

    更新日期:2010-06-01 00:00:00

  • Residual time of sinusoidal metachronal ciliary flow of non-Newtonian fluid through ciliated walls: fertilization and implantation.

    abstract::The monitoring of the ciliated walls in the uterine tube has supreme importance in enhancing the sperm to reach the egg (capacitation processes), and at peristaltic ciliary flow has a more favorable residual time along the canal when compared to the peristaltic flow. Based on the importance of this study, a mathematic...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-020-01405-5

    authors: Zaher AZ,Moawad AMA,Mekheimer KS,Bhatti MM

    更新日期:2021-01-03 00:00:00

  • Experimental measurement of dynamic fluid shear stress on the ventricular surface of the aortic valve leaflet.

    abstract::Aortic valve (AV) calcification is a highly prevalent disease with serious impact on mortality and morbidity. The exact causes and mechanisms of AV calcification are unclear, although previous studies suggest that mechanical forces play a role. It has been clinically demonstrated that calcification preferentially occu...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-011-0306-2

    authors: Yap CH,Saikrishnan N,Yoganathan AP

    更新日期:2012-01-01 00:00:00

  • A computational model that predicts reverse growth in response to mechanical unloading.

    abstract::Ventricular growth is widely considered to be an important feature in the adverse progression of heart diseases, whereas reverse ventricular growth (or reverse remodeling) is often considered to be a favorable response to clinical intervention. In recent years, a number of theoretical models have been proposed to mode...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-014-0598-0

    authors: Lee LC,Genet M,Acevedo-Bolton G,Ordovas K,Guccione JM,Kuhl E

    更新日期:2015-04-01 00:00:00

  • Wing cross veins: an efficient biomechanical strategy to mitigate fatigue failure of insect cuticle.

    abstract::Locust wings are able to sustain millions of cycles of mechanical loading during the lifetime of the insect. Previous studies have shown that cross veins play an important role in delaying crack propagation in the wings. Do cross veins thus also influence the fatigue behaviour of the wings? Since many important fatigu...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-017-0930-6

    authors: Rajabi H,Bazargan P,Pourbabaei A,Eshghi S,Darvizeh A,Gorb SN,Taylor D,Dirks JH

    更新日期:2017-12-01 00:00:00

  • Modeling mechanical inhomogeneities in small populations of proliferating monolayers and spheroids.

    abstract::Understanding the mechanical behavior of multicellular monolayers and spheroids is fundamental to tissue culture, organism development, and the early stages of tumor growth. Proliferating cells in monolayers and spheroids experience mechanical forces as they grow and divide and local inhomogeneities in the mechanical ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-017-0989-0

    authors: Lejeune E,Linder C

    更新日期:2018-06-01 00:00:00

  • Infant brain subjected to oscillatory loading: material differentiation, properties, and interface conditions.

    abstract::Past research into brain injury biomechanics has focussed on short duration impulsive events as opposed to the oscillatory loadings associated with Shaken Baby Syndrome (SBS). A series of 2D finite element models of an axial slice of the infant head were created to provide qualitative information on the behaviour of t...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-007-0079-9

    authors: Couper Z,Albermani F

    更新日期:2008-04-01 00:00:00

  • The effect of collagen degradation on chondrocyte volume and morphology in bovine articular cartilage following a hypotonic challenge.

    abstract::Collagen degradation is one of the early signs of osteoarthritis. It is not known how collagen degradation affects chondrocyte volume and morphology. Thus, the aim of this study was to investigate the effect of enzymatically induced collagen degradation on cell volume and shape changes in articular cartilage after a h...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-012-0409-4

    authors: Turunen SM,Lammi MJ,Saarakkala S,Han SK,Herzog W,Tanska P,Korhonen RK

    更新日期:2013-06-01 00:00:00

  • A coupled model of neovessel growth and matrix mechanics describes and predicts angiogenesis in vitro.

    abstract::During angiogenesis, sprouting microvessels interact with the extracellular matrix (ECM) by degrading and reorganizing the matrix, applying traction forces, and producing deformation. Morphometric features of the resulting microvascular network are affected by the interaction between the matrix and angiogenic microves...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-014-0635-z

    authors: Edgar LT,Maas SA,Guilkey JE,Weiss JA

    更新日期:2015-08-01 00:00:00

  • A mathematical model for bone tissue regeneration inside a specific type of scaffold.

    abstract::Bone tissue regeneration using scaffolds is receiving an increasing interest in orthopedic surgery and tissue engineering applications. In this study, we present the geometrical characterization of a specific family of scaffolds based on a face cubic centered (FCC) arrangement of empty pores leading to analytical form...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-007-0089-7

    authors: Sanz-Herrera JA,Garcia-Aznar JM,Doblare M

    更新日期:2008-10-01 00:00:00

  • Vascular deposition patterns for nanoparticles in an inflamed patient-specific arterial tree.

    abstract::Inflammation, a precursor to many diseases including cancer and atherosclerosis, induces differential surface expression of specific vascular molecules. Blood-borne nanoparticles (NPs), loaded with therapeutic and imaging agents, can recognize and use these molecules as vascular docking sites. Here, a computational mo...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-013-0520-1

    authors: Hossain SS,Hughes TJ,Decuzzi P

    更新日期:2014-06-01 00:00:00

  • A model for arterial adaptation combining microstructural collagen remodeling and 3D tissue growth.

    abstract::Long-term adaptation of soft tissues is realized through growth and remodeling (G&R). Mathematical models are powerful tools in testing hypotheses on G&R and supporting the design and interpretation of experiments. Most theoretical G&R studies concentrate on description of either growth or remodeling. Our model combin...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-010-0204-z

    authors: Machyshyn IM,Bovendeerd PH,van de Ven AA,Rongen PM,van de Vosse FN

    更新日期:2010-12-01 00:00:00

  • Homogenized stiffness matrices for mineralized collagen fibrils and lamellar bone using unit cell finite element models.

    abstract::Mineralized collagen fibrils have been usually analyzed like a two-phase composite material where crystals are considered as platelets that constitute the reinforcement phase. Different models have been used to describe the elastic behavior of the material. In this work, it is shown that when Halpin-Tsai equations are...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-013-0507-y

    authors: Vercher A,Giner E,Arango C,Tarancón JE,Fuenmayor FJ

    更新日期:2014-04-01 00:00:00

  • Modeling left ventricular dynamics with characteristic deformation modes.

    abstract::A computationally efficient method is described for simulating the dynamics of the left ventricle (LV) in three dimensions. LV motion is represented as a combination of a limited number of deformation modes, chosen to represent observed cardiac motions while conserving volume in the LV wall. The contribution of each m...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01168-8

    authors: Hong BD,Moulton MJ,Secomb TW

    更新日期:2019-12-01 00:00:00

  • A novel method for non-invasively detecting the severity and location of aortic aneurysms.

    abstract::The influence of an aortic aneurysm on blood flow waveforms is well established, but how to exploit this link for diagnostic purposes still remains challenging. This work uses a combination of experimental and computational modelling to study how aneurysms of various size affect the waveforms. Experimental studies are...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-017-0884-8

    authors: Sazonov I,Khir AW,Hacham WS,Boileau E,Carson JM,van Loon R,Ferguson C,Nithiarasu P

    更新日期:2017-08-01 00:00:00

  • Moderately degenerated lumbar motion segments: Are they truly unstable?

    abstract::The two main load bearing tissues of the intervertebral disc are the nucleus pulposus and the annulus fibrosus. Both tissues are composed of the same basic components, but differ in their organization and relative amounts. With degeneration, the clear distinction between the two tissues disappears. The changes in bioc...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0835-9

    authors: van Rijsbergen MM,Barthelemy VM,Vrancken AC,Crijns SP,Wilke HJ,Wilson W,van Rietbergen B,Ito K

    更新日期:2017-04-01 00:00:00

  • Models of cytoskeletal mechanics of adherent cells.

    abstract::Adherent cells sense their mechanical environment, which, in turn, regulates their functions. During the past decade, a growing body of evidence has indicated that a deformable, solid-state intracellular structure known as the cytoskeleton (CSK) plays a major role in transmitting and distributing mechanical stresses w...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章,评审

    doi:10.1007/s10237-002-0009-9

    authors: Stamenović D,Ingber DE

    更新日期:2002-06-01 00:00:00

  • Growing skin: tissue expansion in pediatric forehead reconstruction.

    abstract::Tissue expansion is a common surgical procedure to grow extra skin through controlled mechanical over-stretch. It creates skin that matches the color, texture, and thickness of the surrounding tissue, while minimizing scars and risk of rejection. Despite intense research in tissue expansion and skin growth, there is a...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-011-0357-4

    authors: Zöllner AM,Buganza Tepole A,Gosain AK,Kuhl E

    更新日期:2012-07-01 00:00:00

  • A resolved two-way coupled CFD/6-DOF approach for predicting embolus transport and the embolus-trapping efficiency of IVC filters.

    abstract::Inferior vena cava (IVC) filters are medical devices designed to provide a mechanical barrier to the passage of emboli from the deep veins of the legs to the heart and lungs. Despite decades of development and clinical use, IVC filters still fail to prevent the passage of all hazardous emboli. The objective of this st...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0857-3

    authors: Aycock KI,Campbell RL,Manning KB,Craven BA

    更新日期:2017-06-01 00:00:00

  • Microstructural modeling of collagen network mechanics and interactions with the proteoglycan gel in articular cartilage.

    abstract::Cartilage matrix mechanical function is largely determined by interactions between the collagen fibrillar network and the proteoglycan gel. Although the molecular physics of these matrix constituents have been characterized and modern imaging methods are capable of localized measurement of molecular densities and orie...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-006-0036-z

    authors: Quinn TM,Morel V

    更新日期:2007-01-01 00:00:00

  • Computational neurotrauma--design, simulation, and analysis of controlled cortical impact model.

    abstract::The controlled cortical impact (CCI) model is widely used in many laboratories to study traumatic brain injury (TBI). Although external impact parameters during CCI tests could be clearly defined, little is known about the internal tissue-level mechanical responses of the rat brain. Furthermore, the external impact pa...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-010-0212-z

    authors: Mao H,Yang KH,King AI,Yang K

    更新日期:2010-12-01 00:00:00