Study of the combined effects of PTH treatment and mechanical loading in postmenopausal osteoporosis using a new mechanistic PK-PD model.

Abstract:

:One of only a few approved and available anabolic treatments for severe osteoporosis is daily injections of PTH (1-34). This drug has a specific dual action which can act either anabolically or catabolically depending on the type of administration, i.e. intermittent or continuous, respectively. In this paper, we present a mechanistic pharmacokinetic-pharmacodynamic model of the action of PTH in postmenopausal osteoporosis. This model accounts for anabolic and catabolic activities in bone remodelling under intermittent and continuous administration of PTH. The model predicts evolution of common bone biomarkers and bone volume fraction (BV/TV) over time. We compared the relative changes in BV/TV resulting from a daily injection of 20 [Formula: see text]g of PTH with experimental data from the literature. Simulation results indicate a site-specific bone gain of 8.66[Formula: see text] (9.4 ± 1.13[Formula: see text]) at the lumbar spine and 3.14[Formula: see text] (2.82 ± 0.72[Formula: see text]) at the femoral neck. Bone gain depends nonlinearly on the administered dose, being, respectively, 0.68[Formula: see text], 3.4[Formula: see text] and 6.16[Formula: see text] for a 10, 20 and 40 [Formula: see text]g PTH dose at the FN over 2 years. Simulations were performed also taking into account a bone mechanical disuse to reproduce elderly frail subjects. The results show that mechanical disuse ablates the effects of PTH and leads to a 1.08% reduction of bone gain at the FN over a 2-year treatment period for the 20 [Formula: see text]g of PTH. The developed model can simulate a range of pathological conditions and treatments in bones including different PTH doses, different mechanical loading environments and combinations. Consequently, the model can be used for testing and generating hypotheses related to synergistic action between PTH treatment and physical activity.

authors

Lavaill M,Trichilo S,Scheiner S,Forwood MR,Cooper DML,Pivonka P

doi

10.1007/s10237-020-01307-6

subject

Has Abstract

pub_date

2020-10-01 00:00:00

pages

1765-1780

issue

5

eissn

1617-7959

issn

1617-7940

pii

10.1007/s10237-020-01307-6

journal_volume

19

pub_type

杂志文章
  • Instrumentation and procedures for estimating the constitutive parameters of inhomogeneous elastic membranes.

    abstract::This study presents a method for estimating the spatial variations in material properties of elastic membranes, such as biological tissue, which contain both inhomogeneous strain fields and inhomogeneous material properties. In order to validate the method, an inhomogeneous, isotropic rubber membrane was biaxially loa...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-002-0019-7

    authors: Nielsen PM,Malcolm DT,Hunter PJ,Charette PG

    更新日期:2002-12-01 00:00:00

  • Finite element analysis of the pressure-induced deformation of Schlemm's canal endothelial cells.

    abstract::The endothelial cells lining the inner wall of Schlemm's canal (SC) in the eye are relatively unique in that they support a basal-to-apical pressure gradient that causes these cells to deform, creating giant vacuoles and transendothelial pores through which the aqueous humor flows. Glaucoma is associated with an incre...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-014-0640-2

    authors: Vargas-Pinto R,Lai J,Gong H,Ethier CR,Johnson M

    更新日期:2015-08-01 00:00:00

  • A novel perspective on neuron study: damaging and promoting effects in different neurons induced by mechanical stress.

    abstract::A growing volume of experimental evidence demonstrates that mechanical stress plays a significant role in growth, proliferation, apoptosis, gene expression, electrophysiological properties and many other aspects of neurons. In this review, first, the mechanical microenvironment and properties of neurons under in vivo ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章,评审

    doi:10.1007/s10237-015-0743-4

    authors: Wang Y,Wang W,Li Z,Hao S,Wang B

    更新日期:2016-10-01 00:00:00

  • Measuring and modeling patient-specific distributions of material properties in abdominal aortic aneurysm wall.

    abstract::Both the clinically established diameter criterion and novel approaches of computational finite element (FE) analyses for rupture risk stratification of abdominal aortic aneurysms (AAA) are based on assumptions of population-averaged, uniform material properties for the AAA wall. The presence of inter-patient and intr...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-012-0436-1

    authors: Reeps C,Maier A,Pelisek J,Härtl F,Grabher-Meier V,Wall WA,Essler M,Eckstein HH,Gee MW

    更新日期:2013-08-01 00:00:00

  • The influence of load repetition in bone mechanotransduction using poroelastic finite-element models: the impact of permeability.

    abstract::Experimental evidence suggests that interstitial fluid flow is a stimulus for mechanoadaptation in bone. Bone adaptation is sensitive to the frequency of loading and rest insertion between load cycles. We investigated the effects of permeability, frequency and rest insertion on fluid flow in bone using finite-element ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-013-0498-8

    authors: Pereira AF,Shefelbine SJ

    更新日期:2014-01-01 00:00:00

  • Flow plate separation of cells based on elastic properties: a computational study.

    abstract::Medical studies have consistently shown that the best defense against cancer is early detection. Due to this, many efforts have been made to develop methods of screening patient blood quickly and cheaply. These methods range from separation via differences in size, electrostatic potential, chemical potential, antibody...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1093-9

    authors: Becton M,Averett RD,Wang X

    更新日期:2019-04-01 00:00:00

  • Contraction of collecting lymphatics: organization of pressure-dependent rate for multiple lymphangions.

    abstract::The paper describes the extension of a previously developed model of pressure-dependent contraction rate to the case of multiple lymphangions. Mechanical factors are key modulators of active lymphatic pumping. As part of the evolution of our lumped-parameter model to match experimental findings, we have designed an al...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1042-7

    authors: Bertram CD,Macaskill C,Davis MJ,Moore JE Jr

    更新日期:2018-10-01 00:00:00

  • Injury risk prediction from computational simulations of ocular blast loading.

    abstract::A predictive Lagrangian-Eulerian finite element eye model was used to analyze 2.27 and 0.45 kg trinitrotoluene equivalent blasts detonated from 24 different locations. Free air and ground level blasts were simulated directly in front of the eye and at lateral offset locations with box, average, less protective, and mo...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0830-1

    authors: Weaver AA,Stitzel SM,Stitzel JD

    更新日期:2017-04-01 00:00:00

  • Modelling secondary lymphatic valves with a flexible vessel wall: how geometry and material properties combine to provide function.

    abstract::A three-dimensional finite-element fluid/structure interaction model of an intravascular lymphatic valve was constructed, and its properties were investigated under both favourable and adverse pressure differences, simulating valve opening and valve closure, respectively. The shear modulus of the neo-Hookean material ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-020-01325-4

    authors: Bertram CD

    更新日期:2020-12-01 00:00:00

  • Computational neurotrauma--design, simulation, and analysis of controlled cortical impact model.

    abstract::The controlled cortical impact (CCI) model is widely used in many laboratories to study traumatic brain injury (TBI). Although external impact parameters during CCI tests could be clearly defined, little is known about the internal tissue-level mechanical responses of the rat brain. Furthermore, the external impact pa...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-010-0212-z

    authors: Mao H,Yang KH,King AI,Yang K

    更新日期:2010-12-01 00:00:00

  • A multiscale model of cardiac concentric hypertrophy incorporating both mechanical and hormonal drivers of growth.

    abstract::Growth and remodeling in the heart is driven by a combination of mechanical and hormonal signals that produce different patterns of growth in response to exercise, pregnancy, and various pathologies. In particular, increases in afterload lead to concentric hypertrophy, a thickening of the walls that increases the cont...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-020-01385-6

    authors: Estrada AC,Yoshida K,Saucerman JJ,Holmes JW

    更新日期:2020-09-24 00:00:00

  • Intra-articular contact stress distributions at the ankle throughout stance phase-patient-specific finite element analysis as a metric of degeneration propensity.

    abstract::A contact finite element (FE) formulation is introduced, amenable to patient-specific analysis of cumulative cartilage mechano-stimulus attributable to habitual functional activity. CT scans of individual human ankles are segmented to delineate bony margins. Each bone surface is projected outward to create a second su...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-006-0025-2

    authors: Anderson DD,Goldsworthy JK,Shivanna K,Grosland NM,Pedersen DR,Thomas TP,Tochigi Y,Marsh JL,Brown TD

    更新日期:2006-06-01 00:00:00

  • Simulation of cell-substrate traction force dynamics in response to soluble factors.

    abstract::Finite element (FE) simulations of contractile responses of vascular muscular thin films (vMTFs) and endothelial cells resting on an array of microposts under stimulation of soluble factors were conducted in comparison with experimental measurements reported in the literature. Two types of constitutive models were emp...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-017-0886-6

    authors: Liu T

    更新日期:2017-08-01 00:00:00

  • Contribution of postnatal collagen reorientation to depth-dependent mechanical properties of articular cartilage.

    abstract::The collagen fibril network is an important factor for the depth-dependent mechanical behaviour of adult articular cartilage (AC). Recent studies show that collagen orientation is parallel to the articular surface throughout the tissue depth in perinatal animals, and that the collagen orientations transform to a depth...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-010-0233-7

    authors: van Turnhout MC,Kranenbarg S,van Leeuwen JL

    更新日期:2011-04-01 00:00:00

  • A growth-based model for the prediction of fiber angle distribution in the intervertebral disc annulus fibrosus.

    abstract::There is a growing interest in the development of patient-specific finite element models of the human lumbar spine for both the assessment of injury risk and the development of treatment strategies. A current challenge in implementing these models is that the outer annulus fibrosus of the disc is composed of concentri...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01150-4

    authors: Michalek AJ

    更新日期:2019-10-01 00:00:00

  • A computational thrombus formation model: application to an idealized two-dimensional aneurysm treated with bare metal coils.

    abstract::Cardiovascular implantable devices alter the biofluid dynamics and biochemistry of the blood in which they are placed. These perturbations can lead to thrombus formation which may or may not be desired, depending on the application. In this work, a computational model is developed that couples biofluid dynamics and bi...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1059-y

    authors: Horn JD,Maitland DJ,Hartman J,Ortega JM

    更新日期:2018-12-01 00:00:00

  • Growing skin: tissue expansion in pediatric forehead reconstruction.

    abstract::Tissue expansion is a common surgical procedure to grow extra skin through controlled mechanical over-stretch. It creates skin that matches the color, texture, and thickness of the surrounding tissue, while minimizing scars and risk of rejection. Despite intense research in tissue expansion and skin growth, there is a...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-011-0357-4

    authors: Zöllner AM,Buganza Tepole A,Gosain AK,Kuhl E

    更新日期:2012-07-01 00:00:00

  • Perfluorocarbon induces alveolar epithelial cell response through structural and mechanical remodeling.

    abstract::During total liquid ventilation, lung cells are exposed to perfluorocarbon (PFC) whose chemophysical properties highly differ from standard aqueous cell feeding medium (DMEM). We herein perform a systematic study of structural and mechanical properties of A549 alveolar epithelial cells in order to characterize their r...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1005-z

    authors: André Dias S,Planus E,Angely C,Lotteau L,Tissier R,Filoche M,Louis B,Pelle G,Isabey D

    更新日期:2018-08-01 00:00:00

  • Divided medium-based model for analyzing the dynamic reorganization of the cytoskeleton during cell deformation.

    abstract::Cell deformability and mechanical responses of living cells depend closely on the dynamic changes in the structural architecture of the cytoskeleton (CSK). To describe the dynamic reorganization and the heterogeneity of the prestressed multi-modular CSK, we developed a two-dimensional model for the CSK which was taken...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-006-0057-7

    authors: Milan JL,Wendling-Mansuy S,Jean M,Chabrand P

    更新日期:2007-11-01 00:00:00

  • A mathematical model for fluid shear-sensitive 3D tissue construct development.

    abstract::This research studies dynamic culture for 3D tissue construct development with computational fluid dynamics. It proposes a mathematical model to evaluate the impact of flow rates and flow shear stress on cell growth in 3D constructs under perfusion. The modeling results show that dynamic flow, even at flow rate as low...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-012-0378-7

    authors: Liu D,Chua CK,Leong KF

    更新日期:2013-01-01 00:00:00

  • The potential for intercellular mechanical interaction: simulations of single chondrocyte versus anatomically based distribution.

    abstract::Computational studies of chondrocyte mechanics, and cell mechanics in general, have typically been performed using single cell models embedded in an extracellular matrix construct. The assumption of a single cell microstructural model may not capture intercellular interactions or accurately reflect the macroscale mech...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-017-0951-1

    authors: Halloran JP,Sibole SC,Erdemir A

    更新日期:2018-02-01 00:00:00

  • Determining constitutive behavior of the brain tissue using digital image correlation and finite element modeling.

    abstract::Detailed knowledge about the mechanical properties of brain can improve numerical modeling of the brain under various loading conditions. The success of this modeling depends on constitutive model and reliable extraction of its material constants. The isotropy of the brain tissue is a key factor which affects the form...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01186-6

    authors: Felfelian AM,Baradaran Najar A,Jafari Nedoushan R,Salehi H

    更新日期:2019-12-01 00:00:00

  • The effect of the elongation of the proximal aorta on the estimation of the aortic wall distensibility.

    abstract::The compliance of the proximal aortic wall is a major determinant of cardiac afterload. Aortic compliance is often estimated based on cross-sectional area changes over the pulse pressure, under the assumption of a negligible longitudinal stretch during the pulse. However, the proximal aorta is subjected to significant...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-020-01371-y

    authors: Pagoulatou SZ,Ferraro M,Trachet B,Bikia V,Rovas G,Crowe LA,Vallée JP,Adamopoulos D,Stergiopulos N

    更新日期:2020-07-31 00:00:00

  • Creep and stress relaxation of human red cell membrane.

    abstract::In contrast to most mechanical properties of the red cell, experimental information on stress relaxation (SR) of the membrane skeleton is scarce. On the other hand, many postulates or assumptions as to the value of the characteristic time of SR [Formula: see text] can be found in the literature. Here, an experiment is...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0813-2

    authors: Fischer TM

    更新日期:2017-02-01 00:00:00

  • Assessment of boundary conditions for CFD simulation in human carotid artery.

    abstract::Computational fluid dynamics (CFD) is an increasingly used method for investigation of hemodynamic parameters and their alterations under pathological conditions, which are important indicators for diagnosis of cardiovascular disease. In hemodynamic simulation models, the employment of appropriate boundary conditions ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1045-4

    authors: Xu P,Liu X,Zhang H,Ghista D,Zhang D,Shi C,Huang W

    更新日期:2018-12-01 00:00:00

  • Modeling mechanical inhomogeneities in small populations of proliferating monolayers and spheroids.

    abstract::Understanding the mechanical behavior of multicellular monolayers and spheroids is fundamental to tissue culture, organism development, and the early stages of tumor growth. Proliferating cells in monolayers and spheroids experience mechanical forces as they grow and divide and local inhomogeneities in the mechanical ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-017-0989-0

    authors: Lejeune E,Linder C

    更新日期:2018-06-01 00:00:00

  • A network-based response feature matrix as a brain injury metric.

    abstract::Conventional brain injury metrics are scalars that treat the whole head/brain as a single unit but do not characterize the distribution of brain responses. Here, we establish a network-based "response feature matrix" to characterize the magnitude and distribution of impact-induced brain strains. The network nodes and ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01261-y

    authors: Wu S,Zhao W,Rowson B,Rowson S,Ji S

    更新日期:2020-06-01 00:00:00

  • Deformation of human red blood cells in extensional flow through a hyperbolic contraction.

    abstract::Flow-induced damage to red blood cells has been an issue of considerable importance since the introduction of the first cardiovascular devices. Early blood damage prediction models were based on measurements of damage by shear stress only. Subsequently, these models were extrapolated to include other components of the...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01208-3

    authors: Faghih MM,Sharp MK

    更新日期:2020-02-01 00:00:00

  • A time-dependent phenomenological model for cell mechano-sensing.

    abstract::Adherent cells normally apply forces as a generic means of sensing and responding to the mechanical nature of their surrounding environment. How these forces vary as a function of the extracellular rigidity is critical to understanding the regulatory functions that drive important phenomena such as wound healing or mu...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-013-0508-x

    authors: Borau C,Kamm RD,García-Aznar JM

    更新日期:2014-04-01 00:00:00

  • Simulation of multi-stage nonlinear bone remodeling induced by fixed partial dentures of different configurations: a comparative clinical and numerical study.

    abstract::This paper aimed to develop a clinically validated bone remodeling algorithm by integrating bone's dynamic properties in a multi-stage fashion based on a four-year clinical follow-up of implant treatment. The configurational effects of fixed partial dentures (FPDs) were explored using a multi-stage remodeling rule. Th...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0826-x

    authors: Liao Z,Yoda N,Chen J,Zheng K,Sasaki K,Swain MV,Li Q

    更新日期:2017-04-01 00:00:00