Puncta intended: connecting the dots between autophagy and cell stress networks.

Abstract:

:Proteome profiling and global protein-interaction approaches have significantly improved our knowledge of the protein interactomes of autophagy and other cellular stress-response pathways. New discoveries regarding protein complexes, interaction partners, interaction domains, and biological roles of players that are part of these pathways are emerging. The fourth Vancouver Autophagy Symposium showcased research that expands our understanding of the protein interaction networks and molecular mechanisms underlying autophagy and other cellular stress responses in the context of distinct stressors. In the keynote presentation, Dr. Wade Harper described his team's recent discovery of a novel reticulophagy receptor for selective autophagic degradation of the endoplasmic reticulum, and discussed molecular mechanisms involved in ribophagy and non-autophagic ribosomal turnover. In other presentations, both omic and targeted approaches were used to reveal molecular players of other cellular stress responses including amyloid body and stress granule formation, anastasis, and extracellular vesicle biogenesis. Additional topics included the roles of autophagy in disease pathogenesis, autophagy regulatory mechanisms, and crosstalk between autophagy and cellular metabolism in anti-tumor immunity. The relationship between autophagy and other cell stress responses remains a relatively unexplored area in the field, with future investigations required to understand how the various processes are coordinated and connected in cells and tissues. ABBREVIATIONS:A-bodies: amyloid bodies; ACM: amyloid-converting motif; AMFR/gp78: autocrine motility factor receptor; ATG: autophagy-related; ATG4B: autophagy related 4B cysteine peptidase; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CAR T: chimeric antigen receptor T; CASP3: caspase 3; CCPG1: cell cycle progression 1; CAR: chimeric antigen receptor; CML: chronic myeloid leukemia; CCOCs: clear cell ovarian cancers; CVB3: coxsackievirus B3; CRISPR-Cas9: clustered regularly interspaced short palindromic repeats-CRISPR associated protein 9; DDXs: DEAD-box helicases; EIF2S1/EIF-2alpha: eukaryotic translation initiation factor 2 subunit alpha; EIF2AK3: eukaryotic translation initiation factor 2 alpha kinase 3; ER: endoplasmic reticulum; EV: extracellular vesicle; FAO: fatty acid oxidation; GABARAP: GABA type A receptor-associated protein; ILK: integrin linked kinase; ISR: integrated stress response; MTOR: mechanistic target of rapamycin kinase; MPECs: memory precursory effector T cells; MAVS: mitochondrial antiviral signaling protein; NBR1: NBR1 autophagy cargo receptor; PI4KB/PI4KIIIβ: phosphatidylinositol 4-kinase beta; PLEKHM1: pleckstrin homology and RUN domain containing M1; RB1CC1: RB1 inducible coiled-coil 1; RTN3: reticulon 3; rIGSRNAs: ribosomal intergenic noncoding RNAs; RPL29: ribosomal protein L29; RPS3: ribosomal protein S3; S. cerevisiae: Saccharomyces cerevisiae; sEV: small extracellular vesicles; S. pombe: Schizosaccharomyces pombe; SQSTM1: sequestosome 1; SF3B1: splicing factor 3b subunit 1; SILAC-MS: stable isotope labeling with amino acids in cell culture-mass spectrometry; SNAP29: synaptosome associated protein 29; TEX264: testis expressed 264, ER-phagy receptor; TNBC: triple-negative breast cancer; ULK1: unc-51 like autophagy activating kinase 1; VAS: Vancouver Autophagy Symposium.

journal_name

Autophagy

journal_title

Autophagy

authors

Ho CJ,Samarasekera G,Rothe K,Xu J,Yang KC,Leung E,Chan M,Jiang X,Gorski SM

doi

10.1080/15548627.2020.1775394

subject

Has Abstract

pub_date

2020-06-07 00:00:00

pages

1-6

eissn

1554-8627

issn

1554-8635

pub_type

杂志文章
  • Cocaine-mediated microglial activation involves the ER stress-autophagy axis.

    abstract::Cocaine abuse leads to neuroinflammation, which, in turn, contributes to the pathogenesis of neurodegeneration associated with advanced HIV-1 infection. Autophagy plays important roles in both innate and adaptive immune responses. However, the possible functional link between cocaine and autophagy has not been explore...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2015.1052205

    authors: Guo ML,Liao K,Periyasamy P,Yang L,Cai Y,Callen SE,Buch S

    更新日期:2015-01-01 00:00:00

  • Cell-autonomous, paracrine and neuroendocrine feedback regulation of autophagy by DBI/ACBP (diazepam binding inhibitor, acyl-CoA binding protein): the obesity factor.

    abstract::DBI/ACBP (diazepam binding protein, acyl-CoA binding protein) participates in the regulation of fatty acid metabolism when it is localized within cells, whereas outside of cells it acts as a diazepam-binding protein. Recent results indicate that many different mammalian cell types release DBI/ACBP upon in vitro or in ...

    journal_title:Autophagy

    pub_type: 评论,杂志文章

    doi:10.1080/15548627.2019.1662585

    authors: Bravo-San Pedro JM,Sica V,Martins I,Anagnostopoulos G,Maiuri C,Kroemer G

    更新日期:2019-11-01 00:00:00

  • Vacuolar digestion of entire damaged chloroplasts in Arabidopsis thaliana is accomplished by chlorophagy.

    abstract::In yeast and mammals, selective vacuolar delivery and degradation of whole mitochondria, or mitophagy, represents an important quality control system and is achieved by a cargo recognition mechanism enabling selective elimination of dysfunctional mitochondria. As photosynthetic organelles that need light for energy pr...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2017.1310360

    authors: Izumi M,Nakamura S

    更新日期:2017-07-03 00:00:00

  • Mitochondrial elongation during autophagy: a stereotypical response to survive in difficult times.

    abstract::Mitochondrial morphological and structural changes play a role in several cellular processes, including apoptosis. We recently reported that mitochondrial elongation is also critical to sustain cell viability during macroautophagy. During macroautophagy unopposed mitochondrial fusion leads to organelle elongation both...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.7.10.16771

    authors: Gomes LC,Scorrano L

    更新日期:2011-10-01 00:00:00

  • Dual role of Atg1 in regulation of autophagy-specific PAS assembly in Saccharomyces cerevisiae.

    abstract::Most autophagy-related (Atg) proteins are assembled at the phagophore assembly site or pre-autophagosomal structure (PAS), which is a potential site for vesicle formation during vegetative or starvation conditions. To understand the initial step of vesicle formation, it is important to know how Atg proteins are recrui...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6375

    authors: Cheong H,Klionsky DJ

    更新日期:2008-07-01 00:00:00

  • Atg5 and Ambra1 differentially modulate neurogenesis in neural stem cells.

    abstract::Neuroepithelial cells undergoing differentiation efficiently remodel their cytoskeleton and shape in an energy-consuming process. The capacity of autophagy to recycle cellular components and provide energy could fulfill these requirements, thus supporting differentiation. However, little is known regarding the role of...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.8.2.18535

    authors: Vázquez P,Arroba AI,Cecconi F,de la Rosa EJ,Boya P,de Pablo F

    更新日期:2012-02-01 00:00:00

  • Autophagy alleviates hypoxia-induced blood-brain barrier injury via regulation of CLDN5 (claudin 5).

    abstract::Blood-brain barrier (BBB) disruption is a key event in triggering secondary damage to the central nervous system (CNS) under stroke, and is frequently associated with abnormal macroautophagy/autophagy in brain microvascular endothelial cells (BMECs). However, the underlying mechanism of autophagy in maintaining BBB in...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2020.1851897

    authors: Yang Z,Lin P,Chen B,Zhang X,Xiao W,Wu S,Huang C,Feng D,Zhang W,Zhang J

    更新日期:2020-12-07 00:00:00

  • Gastrointestinal stromal tumors (GIST): Facing cell death between autophagy and apoptosis.

    abstract::Autophagy and apoptosis are 2 fundamental biological mechanisms that may cooperate or be antagonistic, although both are involved in deciding the fate of cells in physiological or pathological conditions. These 2 mechanisms coexist simultaneously in cells and share common upstream signals and stimuli. Autophagy and ap...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.1080/15548627.2016.1256522

    authors: Ravegnini G,Sammarini G,Nannini M,Pantaleo MA,Biasco G,Hrelia P,Angelini S

    更新日期:2017-03-04 00:00:00

  • Autophagy-dependent ferroptosis drives tumor-associated macrophage polarization via release and uptake of oncogenic KRAS protein.

    abstract::KRAS is the most frequently mutated oncogene in human neoplasia. Despite a large investment to understand the effects of KRAS mutation in cancer cells, the direct effects of the oncogenetic KRAS activation on immune cells remain elusive. Here, we report that extracellular KRASG12D is essential for pancreatic tumor-ass...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2020.1714209

    authors: Dai E,Han L,Liu J,Xie Y,Kroemer G,Klionsky DJ,Zeh HJ,Kang R,Wang J,Tang D

    更新日期:2020-11-01 00:00:00

  • Silencing of Bcl-2 expression by small interfering RNA induces autophagic cell death in MCF-7 breast cancer cells.

    abstract::Apoptosis (programmed cell death type I) and autophagy (type II) are crucial mechanisms regulating cell death and homeostasis. The Bcl-2 proto-oncogene is overexpressed in 50-70% of breast cancers, potentially leading to resistance to chemotherapy, radiation and hormone therapy-induced apoptosis. Here, we investigated...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6083

    authors: Akar U,Chaves-Reyez A,Barria M,Tari A,Sanguino A,Kondo Y,Kondo S,Arun B,Lopez-Berestein G,Ozpolat B

    更新日期:2008-07-01 00:00:00

  • UVRAG: at the crossroad of autophagy and genomic stability.

    abstract::UVRAG is a promoter of the autophagy pathway, and its deficiency may fuel the development of cancers. Intriguingly, our recent study has demonstrated that this protein also mediates the repair of damaged DNA and patrols centrosome stability, mechanisms that commonly prevent cancer progression, in a manner independent ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.21035

    authors: Zhao Z,Ni D,Ghozalli I,Pirooz SD,Ma B,Liang C

    更新日期:2012-09-01 00:00:00

  • Autophagy as a mechanism of antiviral defense at the maternal-fetal interface.

    abstract::Mechanisms to protect against viral infections are crucial during pregnancy as maternal-fetal transmission can have serious pathological outcomes, including fetal infection and its sequelae, such as growth restriction, birth defects, and/or fetal death. The trophoblast forms the interface between the feto-placental un...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.26558

    authors: Delorme-Axford E,Bayer A,Sadovsky Y,Coyne CB

    更新日期:2013-12-01 00:00:00

  • The cyclin-dependent kinase PITSLRE/CDK11 is required for successful autophagy.

    abstract::(Macro)autophagy is a membrane-trafficking process that serves to sequester cellular constituents in organelles termed autophagosomes, which target their degradation in the lysosome. Autophagy operates at basal levels in all cells where it serves as a homeostatic mechanism to maintain cellular integrity. The levels an...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.7.11.16646

    authors: Wilkinson S,Croft DR,O'Prey J,Meedendorp A,O'Prey M,Dufès C,Ryan KM

    更新日期:2011-11-01 00:00:00

  • Autophagy proteins play cytoprotective and cytocidal roles in leucine starvation-induced cell death in Saccharomyces cerevisiae.

    abstract::Autophagy is essential for prolonging yeast survival during nutrient deprivation; however, this report shows that some autophagy proteins may also be accelerating population death in those conditions. While leucine starvation caused YCA1-mediated apoptosis characterized by increased annexin V staining, nitrogen depriv...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.19314

    authors: Dziedzic SA,Caplan AB

    更新日期:2012-05-01 00:00:00

  • Sorting cells for basal and induced autophagic flux by quantitative ratiometric flow cytometry.

    abstract::We detail here a protocol using tandem-tagged mCherry-EGFP-LC3 (C-G-LC3) to quantify autophagic flux in single cells by ratiometric flow cytometry and to isolate subpopulations of cells based on their relative levels of autophagic flux. This robust and sensitive method measures autophagic flux rather than autophagosom...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.29394

    authors: Gump JM,Thorburn A

    更新日期:2014-07-01 00:00:00

  • DAMPs and autophagy: cellular adaptation to injury and unscheduled cell death.

    abstract::Autophagy is a lysosome-mediated catabolic process involving the degradation of intracellular contents (e.g., proteins and organelles) as well as invading microbes (e.g., parasites, bacteria and viruses). Multiple forms of cellular stress can stimulate this pathway, including nutritional imbalances, oxygen deprivation...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.4161/auto.23691

    authors: Zhang Q,Kang R,Zeh HJ 3rd,Lotze MT,Tang D

    更新日期:2013-04-01 00:00:00

  • The interplay between PRKCI/PKCλ/ι, SQSTM1/p62, and autophagy orchestrates the oxidative metabolic response that drives liver cancer.

    abstract::Hepatocellular carcinoma (HCC) is the consequence of chronic liver damage caused by the excessive generation of reactive oxygen species (ROS). To mitigate the deleterious effects of ROS, cells activate the transcription factor NFE2L2/NRF2, which is constitutively degraded through its partner KEAP1. The inactivation of...

    journal_title:Autophagy

    pub_type: 评论,杂志文章

    doi:10.1080/15548627.2020.1797290

    authors: Moscat J,Diaz-Meco MT

    更新日期:2020-10-01 00:00:00

  • Role for nanomaterial-autophagy interaction in neurodegenerative disease.

    abstract::Nanotechnology is the control and manipulation of materials in the size range of 1-100 nm. Due to increasing research into the potential beneficial applications of nanotechnology, there is an urgent need for the study of possible health risks. Several researchers, including those in our laboratory, have demonstrated e...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.7142

    authors: Stern ST,Johnson DN

    更新日期:2008-11-01 00:00:00

  • The MAPK1/3 pathway is essential for the deregulation of autophagy observed in G2019S LRRK2 mutant fibroblasts.

    abstract::The link between the deregulation of autophagy and cell death processes can be essential in the development of several neurodegenerative diseases, such as Parkinson disease (PD). However, the molecular mechanism of deregulation of this degradative process in PD patients is unknown. The leucine-rich repeat kinase 2 (LR...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.21270

    authors: Bravo-San Pedro JM,Gómez-Sánchez R,Niso-Santano M,Pizarro-Estrella E,Aiastui-Pujana A,Gorostidi A,Climent V,López de Maturana R,Sanchez-Pernaute R,López de Munain A,Fuentes JM,González-Polo RA

    更新日期:2012-10-01 00:00:00

  • Multivesicular bodies and autophagy in erythrocyte maturation.

    abstract::During reticulocyte maturation, hematopoietic progenitors undergo numerous changes to reach the final functional stage which concludes with the release of reticulocytes and erythrocytes into circulation. During this process some proteins, which are not required in the mature stage, are sequestered in the internal vesi...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.2.2.2350

    authors: Fader CM,Colombo MI

    更新日期:2006-04-01 00:00:00

  • Targeting MCL1 to induce mitophagy is a potential therapeutic strategy for Alzheimer disease.

    abstract::Mitochondrial dysfunction is associated with the occurrence of a variety of neurodegenerative diseases, especially Alzheimer disease (AD). As a mitochondrial quality control process, mitophagy is greatly inhibited in AD; increasing evidence shows that the induction of mitophagy is an effective therapeutic intervention...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2020.1860542

    authors: Cen X,Xu X,Xia H

    更新日期:2020-12-20 00:00:00

  • Could melatonin unbalance the equilibrium between autophagy and invasive processes?

    abstract::The Syrian hamster Harderian gland (HG) is a juxtaorbital organ exhibiting marked gender-associated morphological differences. Regarding contents of porphyrins, this gland is a good model for studying physiological oxidative stress effects, since both sexes present strong (in females) and moderate (in males) levels of...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.2.2.2351

    authors: Coto-Montes A,Tomás-Zapico C

    更新日期:2006-04-01 00:00:00

  • Spatiotemporal dynamics of autophagy receptors in selective mitophagy.

    abstract::Damaged mitochondria are turned over through a process of selective autophagy termed mitophagy. In mitophagy, unhealthy mitochondria are recognized and ubiquitinated by Parkinson disease-linked proteins PINK1 and PARK2. The subsequent recruitment of ubiquitin-binding autophagy receptors leads in turn to the sequestrat...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1212788

    authors: Moore AS,Holzbaur EL

    更新日期:2016-10-02 00:00:00

  • Intracellular Staphylococcus aureus eludes selective autophagy by activating a host cell kinase.

    abstract::Autophagy, a catabolic pathway of lysosomal degradation, acts not only as an efficient recycle and survival mechanism during cellular stress, but also as an anti-infective machinery. The human pathogen Staphylococcus aureus (S. aureus) was originally considered solely as an extracellular bacterium, but is now recogniz...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1226732

    authors: Neumann Y,Bruns SA,Rohde M,Prajsnar TK,Foster SJ,Schmitz I

    更新日期:2016-11-01 00:00:00

  • Dual suppressive effect of MTORC1 on autophagy: tame the dragon by shackling both the head and the tail.

    abstract::The lysosome is a key subcellular organelle that receives and degrades macromolecules from endocytic, secretory and autophagic pathways. Lysosomal function is thus critical for an efficient autophagic process. However, the molecular mechanisms mediating lysosomal function upon autophagic induction are largely unknown....

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.23965

    authors: Zhou J,Tan SH,Codogno P,Shen HM

    更新日期:2013-05-01 00:00:00

  • The two faces of autophagy: Coxiella and Mycobacterium.

    abstract::In the world of pathogen-host cell interactions, the autophagic pathway has been recently described as a component of the innate immune response against intracellular microorganisms. Indeed, some bacterial survival mechanisms are hampered when this process is activated. Mycobacterium tuberculosis infection of macropha...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.4161/auto.2827

    authors: Colombo MI,Gutierrez MG,Romano PS

    更新日期:2006-07-01 00:00:00

  • Salinomycin induces cell death with autophagy through activation of endoplasmic reticulum stress in human cancer cells.

    abstract::Salinomycin is perhaps the first promising compound that was discovered through high throughput screening in cancer stem cells. This novel agent can selectively eliminate breast and other cancer stem cells, though the mechanism of action remains unclear. In this study, we found that salinomycin induced autophagy in hu...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.24632

    authors: Li T,Su L,Zhong N,Hao X,Zhong D,Singhal S,Liu X

    更新日期:2013-07-01 00:00:00

  • Double duty of Atg9 self-association in autophagosome biogenesis.

    abstract::The understanding of the membrane flow process during autophagosome formation is essential to illuminate the role of autophagy under various disease-causing conditions. Atg9 is the only identified integral membrane protein required for autophagosome formation, and it is thought to cycle between the membrane sources an...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5.3.7699

    authors: He C,Baba M,Klionsky DJ

    更新日期:2009-04-01 00:00:00

  • Atg9 cycles between mitochondria and the pre-autophagosomal structure in yeasts.

    abstract::Autophagy is a degradative process conserved among eukaryotic cells. It allows the elimination of cytoplasm including aberrant protein aggregates and damaged organelles. Accordingly, it is implicated in normal developmental processes and also serves a protective role in tumor suppression and elimination of invading pa...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.1.2.1840

    authors: Reggiori F,Shintani T,Nair U,Klionsky DJ

    更新日期:2005-07-01 00:00:00

  • IRGM Links Autoimmunity to Autophagy.

    abstract::IRGM is a genetic risk factor for several autoimmune diseases. However, the mechanism of IRGM-mediated protection in autoimmunity remains undetermined. The abnormal activation of type I interferon (IFN) response is one of the significant factors in the pathogenesis of several autoimmune diseases. In our recent study, ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2020.1810920

    authors: Nath P,Jena KK,Mehto S,Chauhan NR,Sahu R,Dhar K,Srinivas K,Chauhan S,Chauhan S

    更新日期:2020-08-19 00:00:00