A Glycoengineered Enzyme with Multiple Mannose-6-Phosphates Is Internalized into Diseased Cells to Restore Its Activity in Lysosomes.

Abstract:

:In this study we developed an efficient method to prepare glycoengineered β-N-acetylhexosaminidase containing multiple mannose-6-phosphates (M6Ps) by combining genetic code expansion with bioorthogonal ligation techniques. We found that multiple M6P-conjugated enzymes were produced with a high efficiency by using combined techniques. Importantly, glycoengineered enzymes entered lysosomes of patient-derived primary cells, which lack endogenous lysosomal β-N-acetylhexosaminidase, more readily than commercialized human β-hexosaminidase. Moreover, glycoengineered enzymes successfully removed GM2-ganglioside stored in lysosomes of diseased cells, indicating that its activity is restored in diseased cells. We also synthesized and applied a lysosome-targeting fluorogenic substrate to monitor endogenous and supplemental glycoengineered β-N-acetylhexosaminidase activities in lysosomes. The results of this study indicate that the present strategy, which relies on genetic code expansion and bioorthogonal ligation techniques, is highly attractive to generate multi-M6P-containing lysosomal enzymes that can be used to study lysosomal storage disorders associated with lysosomal enzyme deficiencies.

journal_name

Cell Chem Biol

journal_title

Cell chemical biology

authors

Hyun JY,Kim S,Lee HS,Shin I

doi

10.1016/j.chembiol.2018.07.011

subject

Has Abstract

pub_date

2018-10-18 00:00:00

pages

1255-1267.e8

issue

10

eissn

2451-9456

issn

2451-9448

pii

S2451-9456(18)30263-0

journal_volume

25

pub_type

杂志文章
  • Dawn of a New Era of Targeted Antioxidant Therapies.

    abstract::In this issue of Cell Chemical Biology, Shah et al. (2019) report an in vitro, high-throughput assay that predicts the ability of compounds to suppress peroxidation of phospholipids. This approach provides a way to design and optimize targeted antioxidants that suppress specific oxidative event in cells, potentially o...

    journal_title:Cell chemical biology

    pub_type: 评论,杂志文章

    doi:10.1016/j.chembiol.2019.11.003

    authors: Stockwell BR

    更新日期:2019-11-21 00:00:00

  • More than One Way to Skin a Catalyst.

    abstract::In this issue of Cell Chemical Biology, Diaz et al. (2017) report a strategy to achieve temporal, spatial, and stoichiometric control over the protein kinase cAbl in living cells. They achieve this by splitting cAbl into two inactive fragments that form an active kinase upon small molecule addition, potentially provid...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2017.10.004

    authors: Michnick SW

    更新日期:2017-10-19 00:00:00

  • Heme Binding Biguanides Target Cytochrome P450-Dependent Cancer Cell Mitochondria.

    abstract::The mechanisms by which cancer cell-intrinsic CYP monooxygenases promote tumor progression are largely unknown. CYP3A4 was unexpectedly associated with breast cancer mitochondria and synthesized arachidonic acid (AA)-derived epoxyeicosatrienoic acids (EETs), which promoted the electron transport chain/respiration and ...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2017.08.009

    authors: Guo Z,Sevrioukova IF,Denisov IG,Zhang X,Chiu TL,Thomas DG,Hanse EA,Cuellar RAD,Grinkova YV,Langenfeld VW,Swedien DS,Stamschror JD,Alvarez J,Luna F,Galván A,Bae YK,Wulfkuhle JD,Gallagher RI,Petricoin EF Rd,Norris B,

    更新日期:2017-10-19 00:00:00

  • No Bones About It: Small Molecules for Bone Regeneration.

    abstract::In this issue of Cell Chemical Biology, Cook et al. (2019) report a new small-molecule activator that enhances osteogenesis and skeletal regeneration in developmental and adult animal models, respectively. This discovery has therapeutic potential for healing following traumatic bone injury, as well as bone remodeling ...

    journal_title:Cell chemical biology

    pub_type: 评论,杂志文章

    doi:10.1016/j.chembiol.2019.06.007

    authors: Chang JW,Moellering RE

    更新日期:2019-07-18 00:00:00

  • Chemoproteomic Profiling of a Pharmacophore-Focused Chemical Library.

    abstract::Pharmacophore-focused chemical libraries are continuously being created in drug discovery programs, yet screening assays to maximize the usage of such libraries are not fully explored. Here, we report a chemical proteomics approach to reutilizing a focused chemical library of 1,800 indole-containing molecules for disc...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2020.04.007

    authors: Punzalan LL,Jiang L,Mao D,Mahapatra AD,Sato S,Takemoto Y,Tsujimura M,Kusamori K,Nishikawa M,Zhou L,Uesugi M

    更新日期:2020-06-18 00:00:00

  • N-Acetyl Cysteine Functions as a Fast-Acting Antioxidant by Triggering Intracellular H2S and Sulfane Sulfur Production.

    abstract::The cysteine prodrug N-acetyl cysteine (NAC) is widely used as a pharmacological antioxidant and cytoprotectant. It has been reported to lower endogenous oxidant levels and to protect cells against a wide range of pro-oxidative insults. As NAC itself is a poor scavenger of oxidants, the molecular mechanisms behind the...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2018.01.011

    authors: Ezeriņa D,Takano Y,Hanaoka K,Urano Y,Dick TP

    更新日期:2018-04-19 00:00:00

  • Re-awakening Innate Immune Signaling in Cancer: The Development of Highly Potent ENPP1 Inhibitors.

    abstract::Activation of innate immune signaling in the tumor microenvironment is central to a successful anti-tumor immune response, and it is in large part mediated by cytosolic double-stranded DNA sensing. Here, Carozza et al. (2020b) report potent and selective inhibitors of ENPP1, a negative regulator of innate immune signa...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2020.11.001

    authors: Cogan D,Bakhoum SF

    更新日期:2020-11-19 00:00:00

  • Fighting Kinase Drug Resistance with Caspase Activators.

    abstract::Kinase inhibitors are effective cancer therapies. Unfortunately, drug resistance emerges in response to kinase inhibition leading to loss of drug efficacy. In this issue of Cell Chemical Biology, Peh et al. (2018) demonstrate that caspase activators effectively delay onset of resistance to kinase inhibitors and are ex...

    journal_title:Cell chemical biology

    pub_type: 评论,杂志文章

    doi:10.1016/j.chembiol.2018.08.001

    authors: Hardy JA

    更新日期:2018-08-16 00:00:00

  • Chemical Inhibition of Pre-mRNA Splicing in Living Saccharomyces cerevisiae.

    abstract::The spliceosome mediates precursor mRNA splicing in eukaryotes, including the model organism Saccharomyces cerevisiae (yeast). Despite decades of study, no chemical inhibitors of yeast splicing in vivo are available. We have developed a system to efficiently inhibit splicing and block proliferation in living yeast cel...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2018.11.008

    authors: Hansen SR,Nikolai BJ,Spreacker PJ,Carrocci TJ,Hoskins AA

    更新日期:2019-03-21 00:00:00

  • The Convergence of Stem Cell Technologies and Phenotypic Drug Discovery.

    abstract::Recent advances in induced pluripotent stem cell technologies and phenotypic screening shape the future of bioactive small-molecule discovery. In this review we analyze the impact of small-molecule phenotypic screens on drug discovery as well as on the investigation of human development and disease biology. We further...

    journal_title:Cell chemical biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.chembiol.2019.05.007

    authors: Friese A,Ursu A,Hochheimer A,Schöler HR,Waldmann H,Bruder JM

    更新日期:2019-08-15 00:00:00

  • A Robust, GFP-Orthogonal Photoswitchable Inhibitor Scaffold Extends Optical Control over the Microtubule Cytoskeleton.

    abstract::Optically controlled chemical reagents, termed "photopharmaceuticals," are powerful tools for precise spatiotemporal control of proteins particularly when genetic methods, such as knockouts or optogenetics are not viable options. However, current photopharmaceutical scaffolds, such as azobenzenes are intolerant of GFP...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2020.11.007

    authors: Gao L,Meiring JCM,Kraus Y,Wranik M,Weinert T,Pritzl SD,Bingham R,Ntouliou E,Jansen KI,Olieric N,Standfuss J,Kapitein LC,Lohmüller T,Ahlfeld J,Akhmanova A,Steinmetz MO,Thorn-Seshold O

    更新日期:2020-11-27 00:00:00

  • Conformation Selective Antibody Enables Genome Profiling and Leads to Discovery of Parallel G-Quadruplex in Human Telomeres.

    abstract::G-quadruplexes are specialized secondary structures in nucleic acids that possess significant conformational polymorphisms. The precise G-quadruplex conformations in vivo and their relevance to biological functions remain controversial and unclear, especially for telomeric G-quadruplexes. Here, we report a novel singl...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2016.08.013

    authors: Liu HY,Zhao Q,Zhang TP,Wu Y,Xiong YX,Wang SK,Ge YL,He JH,Lv P,Ou TM,Tan JH,Li D,Gu LQ,Ren J,Zhao Y,Huang ZS

    更新日期:2016-10-20 00:00:00

  • A MALDI-TOF Approach to Ubiquitin Ligase Activity.

    abstract::In this issue of Cell Chemical Biology,De Cesare et al. (2018) report the development of a high-throughput assay that measures E2/E3 enzyme activity by MALDI-TOF mass spectrometry and apply this to screen for small molecule E3 inhibitors. This assay potentially accelerates the drug discovery for the ubiquitin ligation...

    journal_title:Cell chemical biology

    pub_type: 评论,杂志文章

    doi:10.1016/j.chembiol.2018.09.002

    authors: van Tol BDM,Geurink PP,Ovaa H

    更新日期:2018-09-20 00:00:00

  • Selective JAK3 Inhibitors with a Covalent Reversible Binding Mode Targeting a New Induced Fit Binding Pocket.

    abstract::Janus kinases (JAKs) are a family of cytoplasmatic tyrosine kinases that are attractive targets for the development of anti-inflammatory drugs given their roles in cytokine signaling. One question regarding JAKs and their inhibitors that remains under intensive debate is whether JAK inhibitors should be isoform select...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2016.10.008

    authors: Forster M,Chaikuad A,Bauer SM,Holstein J,Robers MB,Corona CR,Gehringer M,Pfaffenrot E,Ghoreschi K,Knapp S,Laufer SA

    更新日期:2016-11-17 00:00:00

  • Proteome-wide Profiling of Clinical PARP Inhibitors Reveals Compound-Specific Secondary Targets.

    abstract::Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) are a promising class of targeted cancer drugs, but their individual target profiles beyond the PARP family, which could result in differential clinical use or toxicity, are unknown. Using an unbiased, mass spectrometry-based chemical proteomics approach, we genera...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2016.10.011

    authors: Knezevic CE,Wright G,Rix LLR,Kim W,Kuenzi BM,Luo Y,Watters JM,Koomen JM,Haura EB,Monteiro AN,Radu C,Lawrence HR,Rix U

    更新日期:2016-12-22 00:00:00

  • USP7-Specific Inhibitors Target and Modify the Enzyme's Active Site via Distinct Chemical Mechanisms.

    abstract::USP7 is a deubiquitinating enzyme that plays a pivotal role in multiple oncogenic pathways and therefore is a desirable target for new anti-cancer therapies. However, the lack of structural information about the USP7-inhibitor interactions has been a critical gap in the development of potent inhibitors. USP7 is unique...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2017.09.004

    authors: Pozhidaeva A,Valles G,Wang F,Wu J,Sterner DE,Nguyen P,Weinstock J,Kumar KGS,Kanyo J,Wright D,Bezsonova I

    更新日期:2017-12-21 00:00:00

  • "Expand and Click": A New Method for Labeling HIV-1 Envelope Glycoproteins.

    abstract::In this issue of Cell Chemical Biology, Sakin et al. (2017) investigate the nanoscale behavior of the HIV-1 envelope (Env) glycoprotein complex by using genetic code expansion, bioorthogonal amino acids, synthetic dyes, and click chemistry. This minimally invasive approach allows the measurement of native Env cellular...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2017.05.006

    authors: Fernandez MV,Freed EO

    更新日期:2017-05-18 00:00:00

  • A Split-Luciferase-Based Trimer Formation Assay as a High-throughput Screening Platform for Therapeutics in Alport Syndrome.

    abstract::Alport syndrome is a hereditary glomerular disease caused by mutation in type IV collagen α3-α5 chains (α3-α5(IV)), which disrupts trimerization, leading to glomerular basement membrane degeneration. Correcting the trimerization of α3/α4/α5 chain is a feasible therapeutic approach, but is hindered by lack of informati...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2018.02.003

    authors: Omachi K,Kamura M,Teramoto K,Kojima H,Yokota T,Kaseda S,Kuwazuru J,Fukuda R,Koyama K,Matsuyama S,Motomura K,Shuto T,Suico MA,Kai H

    更新日期:2018-05-17 00:00:00

  • Membrane-Active Rhamnolipids Overcome Aminoglycoside Resistance.

    abstract::In this issue of Cell Chemical Biology, Radlinski et al. (2019) identify Pseudomonas-derived rhamnolipids that potentiate aminoglycoside antibiotics in the eradication of antibiotic-tolerant bacterial phenotypes. Microbial physiological and mechanistic studies indicate that rhamnolipids permeabilize S. aureus membrane...

    journal_title:Cell chemical biology

    pub_type: 评论,杂志文章

    doi:10.1016/j.chembiol.2019.09.015

    authors: Yarlagadda V,Wright GD

    更新日期:2019-10-17 00:00:00

  • Light-Activated Chemotaxis.

    abstract::Using light to control cellular processes is one of the attractive areas of research. Here, availability of different, light-responsive caged compounds has played a critical role. In this issue of Cell Chemical Biology, Hövelmann et al. (2016) give us an example of how to design and use caged lipids to guide chemotaxi...

    journal_title:Cell chemical biology

    pub_type: 评论,杂志文章

    doi:10.1016/j.chembiol.2016.05.003

    authors: Dore TM

    更新日期:2016-05-19 00:00:00

  • Discovery of a Small Molecule Promoting Mouse and Human Osteoblast Differentiation via Activation of p38 MAPK-β.

    abstract::Disorders of bone healing and remodeling are indications with an unmet need for effective pharmacological modulators. We used a high-throughput screen to identify activators of the bone marker alkaline phosphatase (ALP), and discovered 6,8-dimethyl-3-(4-phenyl-1H-imidazol-5-yl)quinolin-2(1H)-one (DIPQUO). DIPQUO marke...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2019.03.009

    authors: Cook B,Rafiq R,Lee H,Banks KM,El-Debs M,Chiaravalli J,Glickman JF,Das BC,Chen S,Evans T

    更新日期:2019-07-18 00:00:00

  • The High Genetic Barrier of EFdA/MK-8591 Stems from Strong Interactions with the Active Site of Drug-Resistant HIV-1 Reverse Transcriptase.

    abstract::4'-Ethynyl-2-fluoro-2'-deoxyadenosine (EFdA/MK-8591), a nucleoside reverse transcriptase inhibitor (NRTI) under clinical trials, is a potent and promising long-acting anti-HIV type 1 (HIV-1) agent. EFdA and its derivatives possess a modified 4'-moiety and potently inhibit the replication of a wide spectrum of HIV-1 st...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2018.07.014

    authors: Takamatsu Y,Das D,Kohgo S,Hayashi H,Delino NS,Sarafianos SG,Mitsuya H,Maeda K

    更新日期:2018-10-18 00:00:00

  • Lipase Processing of Complex Lipid Antigens.

    abstract::Mycobacterium tuberculosis synthesizes a wide variety of complex lipids that can serve as antigens in immune recognition of the bacterium. In this issue of Cell Chemical Biology, Gilleron et al. (2016) identify key enzymes essential for lipid antigen processing, which is required for CD1b-restricted T cell activation....

    journal_title:Cell chemical biology

    pub_type: 评论,杂志文章

    doi:10.1016/j.chembiol.2016.09.005

    authors: Sander P,Becker K,Molin MD

    更新日期:2016-09-22 00:00:00

  • MRSA Isolates from United States Hospitals Carry dfrG and dfrK Resistance Genes and Succumb to Propargyl-Linked Antifolates.

    abstract::Antibiotic resistance is a rapidly evolving health concern that requires a sustained effort to understand mechanisms of resistance and to develop new agents that overcome those mechanisms. The dihydrofolate reductase (DHFR) inhibitor, trimethoprim (TMP), remains one of the most important orally administered antibiotic...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2016.11.007

    authors: Reeve SM,Scocchera EW,G-Dayanadan N,Keshipeddy S,Krucinska J,Hajian B,Ferreira J,Nailor M,Aeschlimann J,Wright DL,Anderson AC

    更新日期:2016-12-22 00:00:00

  • Promises and Pitfalls of Metal Imaging in Biology.

    abstract::A picture may speak a thousand words, but if those words fail to form a coherent sentence there is little to be learned. As cutting-edge imaging technology now provides us the tools to decipher the multitude of roles played by metals and metalloids in molecular, cellular, and developmental biology, as well as health a...

    journal_title:Cell chemical biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.chembiol.2017.10.006

    authors: New EJ,Wimmer VC,Hare DJ

    更新日期:2018-01-18 00:00:00

  • Global Cysteine-Reactivity Profiling during Impaired Insulin/IGF-1 Signaling in C. elegans Identifies Uncharacterized Mediators of Longevity.

    abstract::In the nematode Caenorhabditis elegans, inactivating mutations in the insulin/IGF-1 receptor, DAF-2, result in a 2-fold increase in lifespan mediated by DAF-16, a FOXO-family transcription factor. Downstream protein activities that directly regulate longevity during impaired insulin/IGF-1 signaling (IIS) are poorly ch...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2016.06.015

    authors: Martell J,Seo Y,Bak DW,Kingsley SF,Tissenbaum HA,Weerapana E

    更新日期:2016-08-18 00:00:00

  • Molecular Basis for Redox Activation of Epidermal Growth Factor Receptor Kinase.

    abstract::Epidermal growth factor receptor (EGFR) is a target of signal-derived H2O2, and oxidation of active-site cysteine 797 to sulfenic acid enhances kinase activity. Although a major class of covalent drugs targets C797, nothing is known about its catalytic importance or how S-sulfenylation leads to activation. Here, we re...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2016.05.017

    authors: Truong TH,Ung PM,Palde PB,Paulsen CE,Schlessinger A,Carroll KS

    更新日期:2016-07-21 00:00:00

  • Split-miniSOG for Spatially Detecting Intracellular Protein-Protein Interactions by Correlated Light and Electron Microscopy.

    abstract::A protein-fragment complementation assay (PCA) for detecting and localizing intracellular protein-protein interactions (PPIs) was built by bisection of miniSOG, a fluorescent flavoprotein derived from the light, oxygen, voltage (LOV)-2 domain of Arabidopsis phototropin. When brought together by interacting proteins, t...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2019.07.007

    authors: Boassa D,Lemieux SP,Lev-Ram V,Hu J,Xiong Q,Phan S,Mackey M,Ramachandra R,Peace RE,Adams SR,Ellisman MH,Ngo JT

    更新日期:2019-10-17 00:00:00

  • Structural and Biochemical Studies of Non-native Agonists of the LasR Quorum-Sensing Receptor Reveal an L3 Loop "Out" Conformation for LasR.

    abstract::Chemical strategies to block quorum sensing (QS) could provide a route to attenuate virulence in bacterial pathogens. Considerable research has focused on this approach in Pseudomonas aeruginosa, which uses the LuxR-type receptor LasR to regulate much of its QS network. Non-native ligands that antagonize LasR have bee...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2018.06.007

    authors: O'Reilly MC,Dong SH,Rossi FM,Karlen KM,Kumar RS,Nair SK,Blackwell HE

    更新日期:2018-09-20 00:00:00

  • General and Modular Strategy for Designing Potent, Selective, and Pharmacologically Compliant Inhibitors of Rhomboid Proteases.

    abstract::Rhomboid-family intramembrane proteases regulate important biological processes and have been associated with malaria, cancer, and Parkinson's disease. However, due to the lack of potent, selective, and pharmacologically compliant inhibitors, the wide therapeutic potential of rhomboids is currently untapped. Here, we ...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2017.09.007

    authors: Tichá A,Stanchev S,Vinothkumar KR,Mikles DC,Pachl P,Began J,Škerle J,Švehlová K,Nguyen MTN,Verhelst SHL,Johnson DC,Bachovchin DA,Lepšík M,Majer P,Strisovsky K

    更新日期:2017-12-21 00:00:00