Proteome-wide Profiling of Clinical PARP Inhibitors Reveals Compound-Specific Secondary Targets.

Abstract:

:Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) are a promising class of targeted cancer drugs, but their individual target profiles beyond the PARP family, which could result in differential clinical use or toxicity, are unknown. Using an unbiased, mass spectrometry-based chemical proteomics approach, we generated a comparative proteome-wide target map of the four clinical PARPi, olaparib, veliparib, niraparib, and rucaparib. PARPi as a class displayed high target selectivity. However, in addition to the canonical targets PARP1, PARP2, and several of their binding partners, we also identified hexose-6-phosphate dehydrogenase (H6PD) and deoxycytidine kinase (DCK) as previously unrecognized targets of rucaparib and niraparib, respectively. Subsequent functional validation suggested that inhibition of DCK by niraparib could have detrimental effects when combined with nucleoside analog pro-drugs. H6PD silencing can cause apoptosis and further sensitize cells to PARPi, suggesting that H6PD may be, in addition to its established role in metabolic disorders, a new anticancer target.

journal_name

Cell Chem Biol

journal_title

Cell chemical biology

authors

Knezevic CE,Wright G,Rix LLR,Kim W,Kuenzi BM,Luo Y,Watters JM,Koomen JM,Haura EB,Monteiro AN,Radu C,Lawrence HR,Rix U

doi

10.1016/j.chembiol.2016.10.011

subject

Has Abstract

pub_date

2016-12-22 00:00:00

pages

1490-1503

issue

12

eissn

2451-9456

issn

2451-9448

pii

S2451-9456(16)30389-0

journal_volume

23

pub_type

杂志文章
  • Selective Inhibition of BFL1: It's All about Finding the Right Partner.

    abstract::In this issue of Cell Chemical Biology, Harvey et al. (2020) identify 4E14, a sulfhydryl-containing N-acetyltryptophan analog that selectively disrupts binding to the previously undruggable anti-apoptotic BCL2 paralog BFL1, and elucidate a BFL1 conformational change that facilitates 4E14 interaction. These results pro...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2020.05.014

    authors: Dai H,Meng XW,Kaufmann SH

    更新日期:2020-06-18 00:00:00

  • Chemoproteomic Profiling of a Pharmacophore-Focused Chemical Library.

    abstract::Pharmacophore-focused chemical libraries are continuously being created in drug discovery programs, yet screening assays to maximize the usage of such libraries are not fully explored. Here, we report a chemical proteomics approach to reutilizing a focused chemical library of 1,800 indole-containing molecules for disc...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2020.04.007

    authors: Punzalan LL,Jiang L,Mao D,Mahapatra AD,Sato S,Takemoto Y,Tsujimura M,Kusamori K,Nishikawa M,Zhou L,Uesugi M

    更新日期:2020-06-18 00:00:00

  • How to Increase Brightness of Near-Infrared Fluorescent Proteins in Mammalian Cells.

    abstract::Numerous near-infrared (NIR) fluorescent proteins (FPs) were recently engineered from bacterial photoreceptors but lack of their systematic comparison makes researcher's choice rather difficult. Here we evaluated side-by-side several modern NIR FPs, such as blue-shifted smURFP and miRFP670, and red-shifted mIFP and mi...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2017.05.018

    authors: Shemetov AA,Oliinyk OS,Verkhusha VV

    更新日期:2017-06-22 00:00:00

  • Catching Sirtuin-2 Intermediates One Structure at the Time.

    abstract::Sirtuins are a large enzyme family involved in installing and removing post-translational modifications involving lysine side chains. These enzymes have been of intense research interest and we now understand many details of their mechanism, although later steps of the deacetylase activity have remained a mystery. In ...

    journal_title:Cell chemical biology

    pub_type: 评论,杂志文章

    doi:10.1016/j.chembiol.2017.03.004

    authors: Lee S,Chen Z,Zhang G

    更新日期:2017-03-16 00:00:00

  • Detection of Low-Abundance Metabolites in Live Cells Using an RNA Integrator.

    abstract::Genetically encoded biosensors are useful tools for detecting the presence and levels of diverse biomolecules in living cells. However, low-abundance targets are difficult to detect because they are often unable to bind and activate enough biosensors to detect using standard microscopic imaging approaches. Here we des...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2019.01.005

    authors: You M,Litke JL,Wu R,Jaffrey SR

    更新日期:2019-04-18 00:00:00

  • A Robust, GFP-Orthogonal Photoswitchable Inhibitor Scaffold Extends Optical Control over the Microtubule Cytoskeleton.

    abstract::Optically controlled chemical reagents, termed "photopharmaceuticals," are powerful tools for precise spatiotemporal control of proteins particularly when genetic methods, such as knockouts or optogenetics are not viable options. However, current photopharmaceutical scaffolds, such as azobenzenes are intolerant of GFP...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2020.11.007

    authors: Gao L,Meiring JCM,Kraus Y,Wranik M,Weinert T,Pritzl SD,Bingham R,Ntouliou E,Jansen KI,Olieric N,Standfuss J,Kapitein LC,Lohmüller T,Ahlfeld J,Akhmanova A,Steinmetz MO,Thorn-Seshold O

    更新日期:2020-11-27 00:00:00

  • Functional mimicry revealed by the crystal structure of an eIF4A:RNA complex bound to the interfacial inhibitor, desmethyl pateamine A.

    abstract::Interfacial inhibitors exert their biological effects through co-association with two macromolecules. The pateamine A (PatA) class of molecules function by stabilizing eukaryotic initiation factor (eIF) 4A RNA helicase onto RNA, resulting in translation initiation inhibition. Here, we present the crystal structure of ...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2020.12.006

    authors: Naineni SK,Liang J,Hull K,Cencic R,Zhu M,Northcote P,Teesdale-Spittle P,Romo D,Nagar B,Pelletier J

    更新日期:2021-01-05 00:00:00

  • Ubiquinone Biosynthetic Complexes in Prokaryotes and Eukaryotes.

    abstract::Ubiquinone (UQ) is a conserved polyprenylated lipid essential to cellular respiration. Two papers, one in this issue of Cell Chemical Biology (Hajj Chehade et al., 2019) and another in Molecular Cell (Lohman et al., 2019), identify lipid-binding proteins that play crucial roles in chaperoning UQ-intermediates. ...

    journal_title:Cell chemical biology

    pub_type: 评论,杂志文章

    doi:10.1016/j.chembiol.2019.04.005

    authors: Tsui HS,Clarke CF

    更新日期:2019-04-18 00:00:00

  • Combined Proteomic and In Silico Target Identification Reveal a Role for 5-Lipoxygenase in Developmental Signaling Pathways.

    abstract::Identification and validation of the targets of bioactive small molecules identified in cell-based screening is challenging and often meets with failure, calling for the development of new methodology. We demonstrate that a combination of chemical proteomics with in silico target prediction employing the SPiDER method...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2018.05.016

    authors: Brand S,Roy S,Schröder P,Rathmer B,Roos J,Kapoor S,Patil S,Pommerenke C,Maier T,Janning P,Eberth S,Steinhilber D,Schade D,Schneider G,Kumar K,Ziegler S,Waldmann H

    更新日期:2018-09-20 00:00:00

  • The High Genetic Barrier of EFdA/MK-8591 Stems from Strong Interactions with the Active Site of Drug-Resistant HIV-1 Reverse Transcriptase.

    abstract::4'-Ethynyl-2-fluoro-2'-deoxyadenosine (EFdA/MK-8591), a nucleoside reverse transcriptase inhibitor (NRTI) under clinical trials, is a potent and promising long-acting anti-HIV type 1 (HIV-1) agent. EFdA and its derivatives possess a modified 4'-moiety and potently inhibit the replication of a wide spectrum of HIV-1 st...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2018.07.014

    authors: Takamatsu Y,Das D,Kohgo S,Hayashi H,Delino NS,Sarafianos SG,Mitsuya H,Maeda K

    更新日期:2018-10-18 00:00:00

  • Fighting Kinase Drug Resistance with Caspase Activators.

    abstract::Kinase inhibitors are effective cancer therapies. Unfortunately, drug resistance emerges in response to kinase inhibition leading to loss of drug efficacy. In this issue of Cell Chemical Biology, Peh et al. (2018) demonstrate that caspase activators effectively delay onset of resistance to kinase inhibitors and are ex...

    journal_title:Cell chemical biology

    pub_type: 评论,杂志文章

    doi:10.1016/j.chembiol.2018.08.001

    authors: Hardy JA

    更新日期:2018-08-16 00:00:00

  • Systematic Identification of Pharmacological Targets from Small-Molecule Phenotypic Screens.

    abstract::Phenotypic drug discovery offers some advantages over target-based methods, mainly because it allows drug leads to be tested in systems that more closely model distinct disease states. However, a potential disadvantage is the difficulty of linking the observed phenotype to a specific cellular target. To address this p...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2016.08.011

    authors: Liu X,Baarsma HA,Thiam CH,Montrone C,Brauner B,Fobo G,Heier JS,Duscha S,Königshoff M,Angeli V,Ruepp A,Campillos M

    更新日期:2016-10-20 00:00:00

  • No Bones About It: Small Molecules for Bone Regeneration.

    abstract::In this issue of Cell Chemical Biology, Cook et al. (2019) report a new small-molecule activator that enhances osteogenesis and skeletal regeneration in developmental and adult animal models, respectively. This discovery has therapeutic potential for healing following traumatic bone injury, as well as bone remodeling ...

    journal_title:Cell chemical biology

    pub_type: 评论,杂志文章

    doi:10.1016/j.chembiol.2019.06.007

    authors: Chang JW,Moellering RE

    更新日期:2019-07-18 00:00:00

  • Engineered Proteins Program Mammalian Cells to Target Inflammatory Disease Sites.

    abstract::Disease sites in atherosclerosis and cancer feature cell masses (e.g., plaques/tumors), a low pH extracellular microenvironment, and various pro-inflammatory cytokines such as tumor necrosis factor α (TNFα). The ability to engineer a cell to seek TNFα sources allows for targeted therapeutic delivery. To accomplish thi...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2017.05.008

    authors: Qudrat A,Mosabbir AA,Truong K

    更新日期:2017-06-22 00:00:00

  • Epiblastin A Induces Reprogramming of Epiblast Stem Cells Into Embryonic Stem Cells by Inhibition of Casein Kinase 1.

    abstract::The discovery of novel small molecules that induce stem cell reprogramming and give efficient access to pluripotent stem cells is of major importance for potential therapeutic applications and may reveal novel insights into the factors controlling pluripotency. Chemical reprogramming of mouse epiblast stem cells (EpiS...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2016.02.015

    authors: Ursu A,Illich DJ,Takemoto Y,Porfetye AT,Zhang M,Brockmeyer A,Janning P,Watanabe N,Osada H,Vetter IR,Ziegler S,Schöler HR,Waldmann H

    更新日期:2016-04-21 00:00:00

  • A ZDHHC5-GOLGA7 Protein Acyltransferase Complex Promotes Nonapoptotic Cell Death.

    abstract::Lethal small molecules are useful probes to discover and characterize novel cell death pathways and biochemical mechanisms. Here we report that the synthetic oxime-containing small molecule caspase-independent lethal 56 (CIL56) induces an unconventional form of nonapoptotic cell death distinct from necroptosis, ferrop...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2019.09.014

    authors: Ko PJ,Woodrow C,Dubreuil MM,Martin BR,Skouta R,Bassik MC,Dixon SJ

    更新日期:2019-12-19 00:00:00

  • Lipase Processing of Complex Lipid Antigens.

    abstract::Mycobacterium tuberculosis synthesizes a wide variety of complex lipids that can serve as antigens in immune recognition of the bacterium. In this issue of Cell Chemical Biology, Gilleron et al. (2016) identify key enzymes essential for lipid antigen processing, which is required for CD1b-restricted T cell activation....

    journal_title:Cell chemical biology

    pub_type: 评论,杂志文章

    doi:10.1016/j.chembiol.2016.09.005

    authors: Sander P,Becker K,Molin MD

    更新日期:2016-09-22 00:00:00

  • Conformation Selective Antibody Enables Genome Profiling and Leads to Discovery of Parallel G-Quadruplex in Human Telomeres.

    abstract::G-quadruplexes are specialized secondary structures in nucleic acids that possess significant conformational polymorphisms. The precise G-quadruplex conformations in vivo and their relevance to biological functions remain controversial and unclear, especially for telomeric G-quadruplexes. Here, we report a novel singl...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2016.08.013

    authors: Liu HY,Zhao Q,Zhang TP,Wu Y,Xiong YX,Wang SK,Ge YL,He JH,Lv P,Ou TM,Tan JH,Li D,Gu LQ,Ren J,Zhao Y,Huang ZS

    更新日期:2016-10-20 00:00:00

  • A Bright Future for Precision Medicine: Advances in Fluorescent Chemical Probe Design and Their Clinical Application.

    abstract::The Precision Medicine Initiative aims to use advances in basic and clinical research to develop therapeutics that selectively target and kill cancer cells. Under the same doctrine of precision medicine, there is an equally important need to visualize these diseased cells to enable diagnosis, facilitate surgical resec...

    journal_title:Cell chemical biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.chembiol.2015.12.003

    authors: Garland M,Yim JJ,Bogyo M

    更新日期:2016-01-21 00:00:00

  • Small-Molecule TLR8 Antagonists via Structure-Based Rational Design.

    abstract::Rational design of drug-like small-molecule ligands based on structural information of proteins remains a significant challenge in chemical biology. In particular, designs targeting protein-protein interfaces have met little success given the dynamic nature of the protein surfaces. Herein, we utilized the structure of...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2018.07.004

    authors: Hu Z,Tanji H,Jiang S,Zhang S,Koo K,Chan J,Sakaniwa K,Ohto U,Candia A,Shimizu T,Yin H

    更新日期:2018-10-18 00:00:00

  • N-Acetyl Cysteine Functions as a Fast-Acting Antioxidant by Triggering Intracellular H2S and Sulfane Sulfur Production.

    abstract::The cysteine prodrug N-acetyl cysteine (NAC) is widely used as a pharmacological antioxidant and cytoprotectant. It has been reported to lower endogenous oxidant levels and to protect cells against a wide range of pro-oxidative insults. As NAC itself is a poor scavenger of oxidants, the molecular mechanisms behind the...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2018.01.011

    authors: Ezeriņa D,Takano Y,Hanaoka K,Urano Y,Dick TP

    更新日期:2018-04-19 00:00:00

  • Chemical Inhibition of Pre-mRNA Splicing in Living Saccharomyces cerevisiae.

    abstract::The spliceosome mediates precursor mRNA splicing in eukaryotes, including the model organism Saccharomyces cerevisiae (yeast). Despite decades of study, no chemical inhibitors of yeast splicing in vivo are available. We have developed a system to efficiently inhibit splicing and block proliferation in living yeast cel...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2018.11.008

    authors: Hansen SR,Nikolai BJ,Spreacker PJ,Carrocci TJ,Hoskins AA

    更新日期:2019-03-21 00:00:00

  • AKAP95 Organizes a Nuclear Microdomain to Control Local cAMP for Regulating Nuclear PKA.

    abstract::Contrary to the classic model of protein kinase A (PKA) residing outside of the nucleus, we identify a nuclear signaling complex that consists of AKAP95, PKA, and PDE4D5 and show that it forms a functional cyclic AMP (cAMP) signaling microdomain. Locally generated cAMP can accumulate within the vicinity of this comple...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2019.03.003

    authors: Clister T,Greenwald EC,Baillie GS,Zhang J

    更新日期:2019-06-20 00:00:00

  • A BAF'ling Approach to Curing HIV.

    abstract::Latency is the primary barrier to the development of a long-sought cure for HIV-1. In this issue of Cell Chemical Biology, Marian et al., (2018) describe the development of novel compounds targeting the BAF chromatin remodeling complex to reverse HIV latency, with the potential to provide a functional cure. ...

    journal_title:Cell chemical biology

    pub_type: 评论,杂志文章

    doi:10.1016/j.chembiol.2018.12.007

    authors: Tomar S,Ali I,Ott M

    更新日期:2018-12-20 00:00:00

  • Selective JAK3 Inhibitors with a Covalent Reversible Binding Mode Targeting a New Induced Fit Binding Pocket.

    abstract::Janus kinases (JAKs) are a family of cytoplasmatic tyrosine kinases that are attractive targets for the development of anti-inflammatory drugs given their roles in cytokine signaling. One question regarding JAKs and their inhibitors that remains under intensive debate is whether JAK inhibitors should be isoform select...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2016.10.008

    authors: Forster M,Chaikuad A,Bauer SM,Holstein J,Robers MB,Corona CR,Gehringer M,Pfaffenrot E,Ghoreschi K,Knapp S,Laufer SA

    更新日期:2016-11-17 00:00:00

  • Lanthanide-Based Optical Probes of Biological Systems.

    abstract::The unique photophysical properties of lanthanides, such as europium, terbium, and ytterbium, make them versatile molecular probes of biological systems. In particular, their long-lived photoluminescence, narrow bandwidth emissions, and large Stokes shifts enable experiments that are infeasible with organic fluorophor...

    journal_title:Cell chemical biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.chembiol.2020.07.009

    authors: Cho U,Chen JK

    更新日期:2020-08-20 00:00:00

  • A Highly Efficient CRISPR-Cas9-Based Genome Engineering Platform in Acinetobacter baumannii to Understand the H2O2-Sensing Mechanism of OxyR.

    abstract::The rapid emergence of extensively drug-resistant A. baumannii has posed a major threat to global public health, emphasizing the desperate need for novel therapeutic strategies. We report the development of a highly efficient genome-engineering platform in A. baumannii by coupling a Cas9 nuclease-mediated genome cleav...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2019.09.003

    authors: Wang Y,Wang Z,Chen Y,Hua X,Yu Y,Ji Q

    更新日期:2019-12-19 00:00:00

  • GNF-2 Inhibits Dengue Virus by Targeting Abl Kinases and the Viral E Protein.

    abstract::Dengue virus infects more than 300 million people annually, yet there is no widely protective vaccine or drugs against the virus. Efforts to develop antivirals against classical targets such as the viral protease and polymerase have not yielded drugs that have advanced to the clinic. Here, we show that the allosteric ...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2016.03.010

    authors: Clark MJ,Miduturu C,Schmidt AG,Zhu X,Pitts JD,Wang J,Potisopon S,Zhang J,Wojciechowski A,Hann Chu JJ,Gray NS,Yang PL

    更新日期:2016-04-21 00:00:00

  • A MALDI-TOF Approach to Ubiquitin Ligase Activity.

    abstract::In this issue of Cell Chemical Biology,De Cesare et al. (2018) report the development of a high-throughput assay that measures E2/E3 enzyme activity by MALDI-TOF mass spectrometry and apply this to screen for small molecule E3 inhibitors. This assay potentially accelerates the drug discovery for the ubiquitin ligation...

    journal_title:Cell chemical biology

    pub_type: 评论,杂志文章

    doi:10.1016/j.chembiol.2018.09.002

    authors: van Tol BDM,Geurink PP,Ovaa H

    更新日期:2018-09-20 00:00:00

  • Unique Binding Specificities of Proteins toward Isomeric Asparagine-Linked Glycans.

    abstract::The glycan ligands recognized by Siglecs, influenza viruses, and galectins, as well as many plant lectins, are not well defined. To explore their binding to asparagine (Asn)-linked N-glycans, we synthesized a library of isomeric multiantennary N-glycans that vary in terminal non-reducing sialic acid, galactose, and N-...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2019.01.002

    authors: Gao C,Hanes MS,Byrd-Leotis LA,Wei M,Jia N,Kardish RJ,McKitrick TR,Steinhauer DA,Cummings RD

    更新日期:2019-04-18 00:00:00