Catching Sirtuin-2 Intermediates One Structure at the Time.

Abstract:

:Sirtuins are a large enzyme family involved in installing and removing post-translational modifications involving lysine side chains. These enzymes have been of intense research interest and we now understand many details of their mechanism, although later steps of the deacetylase activity have remained a mystery. In this issue of Cell Chemical Biology, Wang et al. (2017) capture a late intermediate of SIRT2 catalysis and describe its structure.

journal_name

Cell Chem Biol

journal_title

Cell chemical biology

authors

Lee S,Chen Z,Zhang G

doi

10.1016/j.chembiol.2017.03.004

subject

Has Abstract

pub_date

2017-03-16 00:00:00

pages

248-249

issue

3

eissn

2451-9456

issn

2451-9448

pii

S2451-9456(17)30067-3

journal_volume

24

pub_type

评论,杂志文章
  • A Glycoengineered Enzyme with Multiple Mannose-6-Phosphates Is Internalized into Diseased Cells to Restore Its Activity in Lysosomes.

    abstract::In this study we developed an efficient method to prepare glycoengineered β-N-acetylhexosaminidase containing multiple mannose-6-phosphates (M6Ps) by combining genetic code expansion with bioorthogonal ligation techniques. We found that multiple M6P-conjugated enzymes were produced with a high efficiency by using comb...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2018.07.011

    authors: Hyun JY,Kim S,Lee HS,Shin I

    更新日期:2018-10-18 00:00:00

  • USP7-Specific Inhibitors Target and Modify the Enzyme's Active Site via Distinct Chemical Mechanisms.

    abstract::USP7 is a deubiquitinating enzyme that plays a pivotal role in multiple oncogenic pathways and therefore is a desirable target for new anti-cancer therapies. However, the lack of structural information about the USP7-inhibitor interactions has been a critical gap in the development of potent inhibitors. USP7 is unique...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2017.09.004

    authors: Pozhidaeva A,Valles G,Wang F,Wu J,Sterner DE,Nguyen P,Weinstock J,Kumar KGS,Kanyo J,Wright D,Bezsonova I

    更新日期:2017-12-21 00:00:00

  • Combined Proteomic and In Silico Target Identification Reveal a Role for 5-Lipoxygenase in Developmental Signaling Pathways.

    abstract::Identification and validation of the targets of bioactive small molecules identified in cell-based screening is challenging and often meets with failure, calling for the development of new methodology. We demonstrate that a combination of chemical proteomics with in silico target prediction employing the SPiDER method...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2018.05.016

    authors: Brand S,Roy S,Schröder P,Rathmer B,Roos J,Kapoor S,Patil S,Pommerenke C,Maier T,Janning P,Eberth S,Steinhilber D,Schade D,Schneider G,Kumar K,Ziegler S,Waldmann H

    更新日期:2018-09-20 00:00:00

  • Hit Triage and Validation in Phenotypic Screening: Considerations and Strategies.

    abstract::The promise of phenotypic screening resides in its track record of novel biology and first-in-class therapies. However, challenges stemming from major differences between target-based and phenotypic screening do exist. These challenges prompted us to rethink the critical stage of hit triage and validation on the road ...

    journal_title:Cell chemical biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.chembiol.2020.08.009

    authors: Vincent F,Loria PM,Weston AD,Steppan CM,Doyonnas R,Wang YM,Rockwell KL,Peakman MC

    更新日期:2020-11-19 00:00:00

  • Rox, a Rifamycin Resistance Enzyme with an Unprecedented Mechanism of Action.

    abstract::Rifamycin monooxygenases (Rox) are present in a variety of environmental bacteria and are associated with decomposition of the clinically utilized antibiotic rifampin. Here we report the structure and function of a drug-inducible rox gene from Streptomyces venezuelae, which encodes a class A flavoprotein monooxygenase...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2018.01.009

    authors: Koteva K,Cox G,Kelso JK,Surette MD,Zubyk HL,Ejim L,Stogios P,Savchenko A,Sørensen D,Wright GD

    更新日期:2018-04-19 00:00:00

  • A BAF'ling Approach to Curing HIV.

    abstract::Latency is the primary barrier to the development of a long-sought cure for HIV-1. In this issue of Cell Chemical Biology, Marian et al., (2018) describe the development of novel compounds targeting the BAF chromatin remodeling complex to reverse HIV latency, with the potential to provide a functional cure. ...

    journal_title:Cell chemical biology

    pub_type: 评论,杂志文章

    doi:10.1016/j.chembiol.2018.12.007

    authors: Tomar S,Ali I,Ott M

    更新日期:2018-12-20 00:00:00

  • A ZDHHC5-GOLGA7 Protein Acyltransferase Complex Promotes Nonapoptotic Cell Death.

    abstract::Lethal small molecules are useful probes to discover and characterize novel cell death pathways and biochemical mechanisms. Here we report that the synthetic oxime-containing small molecule caspase-independent lethal 56 (CIL56) induces an unconventional form of nonapoptotic cell death distinct from necroptosis, ferrop...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2019.09.014

    authors: Ko PJ,Woodrow C,Dubreuil MM,Martin BR,Skouta R,Bassik MC,Dixon SJ

    更新日期:2019-12-19 00:00:00

  • Chemoproteomics-enabled discovery of covalent RNF114-based degraders that mimic natural product function.

    abstract::The translation of functionally active natural products into fully synthetic small-molecule mimetics has remained an important process in medicinal chemistry. We recently discovered that the terpene natural product nimbolide can be utilized as a covalent recruiter of the E3 ubiquitin ligase RNF114 for use in targeted ...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2021.01.005

    authors: Luo M,Spradlin JN,Boike L,Tong B,Brittain SM,McKenna JM,Tallarico JA,Schirle M,Maimone TJ,Nomura DK

    更新日期:2021-01-22 00:00:00

  • A Bright Future for Precision Medicine: Advances in Fluorescent Chemical Probe Design and Their Clinical Application.

    abstract::The Precision Medicine Initiative aims to use advances in basic and clinical research to develop therapeutics that selectively target and kill cancer cells. Under the same doctrine of precision medicine, there is an equally important need to visualize these diseased cells to enable diagnosis, facilitate surgical resec...

    journal_title:Cell chemical biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.chembiol.2015.12.003

    authors: Garland M,Yim JJ,Bogyo M

    更新日期:2016-01-21 00:00:00

  • Just a Spoonful of Sugar, HTLV-1 Style.

    abstract::Host cell metabolism regulates viral infection. In this issue of Cell Chemical Biology, Kulkarni et al. (2017) reveal the importance of oxygen concentrations and glycolysis in the reactivation of human T cell leukemia virus (HTLV-1). Identifying the host metabolic networks that regulate infection will foster our under...

    journal_title:Cell chemical biology

    pub_type: 评论,杂志文章

    doi:10.1016/j.chembiol.2017.10.014

    authors: Taylor N

    更新日期:2017-11-16 00:00:00

  • N-Acetyl Cysteine Functions as a Fast-Acting Antioxidant by Triggering Intracellular H2S and Sulfane Sulfur Production.

    abstract::The cysteine prodrug N-acetyl cysteine (NAC) is widely used as a pharmacological antioxidant and cytoprotectant. It has been reported to lower endogenous oxidant levels and to protect cells against a wide range of pro-oxidative insults. As NAC itself is a poor scavenger of oxidants, the molecular mechanisms behind the...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2018.01.011

    authors: Ezeriņa D,Takano Y,Hanaoka K,Urano Y,Dick TP

    更新日期:2018-04-19 00:00:00

  • A Photo-clickable ATP-Mimetic Reveals Nucleotide Interactors in the Membrane Proteome.

    abstract::ATP is an important energy metabolite and allosteric signal in health and disease. ATP-interacting proteins, such as P2 receptors, control inflammation, cell death, migration, and wound healing. However, identification of allosteric ATP sites remains challenging, and our current inventory of ATP-controlled pathways is...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2020.05.010

    authors: Jelcic M,Wang K,Hui KL,Cai XC,Enyedi B,Luo M,Niethammer P

    更新日期:2020-08-20 00:00:00

  • Lipase Processing of Complex Lipid Antigens.

    abstract::Mycobacterium tuberculosis synthesizes a wide variety of complex lipids that can serve as antigens in immune recognition of the bacterium. In this issue of Cell Chemical Biology, Gilleron et al. (2016) identify key enzymes essential for lipid antigen processing, which is required for CD1b-restricted T cell activation....

    journal_title:Cell chemical biology

    pub_type: 评论,杂志文章

    doi:10.1016/j.chembiol.2016.09.005

    authors: Sander P,Becker K,Molin MD

    更新日期:2016-09-22 00:00:00

  • Small-Molecule Allosteric Triggers of Clostridium difficile Toxin B Auto-proteolysis as a Therapeutic Strategy.

    abstract::Clostridium difficile causes increasing numbers of life-threatening intestinal infections. Symptoms associated with C. difficile infection (CDI) are mediated by secreted protein toxins, whose virulence is modulated by intracellular auto-proteolysis following allosteric activation of their protease domains by inositol ...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2018.10.002

    authors: Ivarsson ME,Durantie E,Huberli C,Huwiler S,Hegde C,Friedman J,Altamura F,Lu J,Verdu EF,Bercik P,Logan SM,Chen W,Leroux JC,Castagner B

    更新日期:2019-01-17 00:00:00

  • Systematic Identification of Pharmacological Targets from Small-Molecule Phenotypic Screens.

    abstract::Phenotypic drug discovery offers some advantages over target-based methods, mainly because it allows drug leads to be tested in systems that more closely model distinct disease states. However, a potential disadvantage is the difficulty of linking the observed phenotype to a specific cellular target. To address this p...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2016.08.011

    authors: Liu X,Baarsma HA,Thiam CH,Montrone C,Brauner B,Fobo G,Heier JS,Duscha S,Königshoff M,Angeli V,Ruepp A,Campillos M

    更新日期:2016-10-20 00:00:00

  • Fighting Kinase Drug Resistance with Caspase Activators.

    abstract::Kinase inhibitors are effective cancer therapies. Unfortunately, drug resistance emerges in response to kinase inhibition leading to loss of drug efficacy. In this issue of Cell Chemical Biology, Peh et al. (2018) demonstrate that caspase activators effectively delay onset of resistance to kinase inhibitors and are ex...

    journal_title:Cell chemical biology

    pub_type: 评论,杂志文章

    doi:10.1016/j.chembiol.2018.08.001

    authors: Hardy JA

    更新日期:2018-08-16 00:00:00

  • GFP-Aequorin Protein Sensor for Ex Vivo and In Vivo Imaging of Ca(2+) Dynamics in High-Ca(2+) Organelles.

    abstract::Proper functioning of organelles such as the ER or the Golgi apparatus requires luminal accumulation of Ca(2+) at high concentrations. Here we describe a ratiometric low-affinity Ca(2+) sensor of the GFP-aequorin protein (GAP) family optimized for measurements in high-Ca(2+) concentration environments. Transgenic anim...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2016.05.010

    authors: Navas-Navarro P,Rojo-Ruiz J,Rodriguez-Prados M,Ganfornina MD,Looger LL,Alonso MT,García-Sancho J

    更新日期:2016-06-23 00:00:00

  • A Split-Luciferase-Based Trimer Formation Assay as a High-throughput Screening Platform for Therapeutics in Alport Syndrome.

    abstract::Alport syndrome is a hereditary glomerular disease caused by mutation in type IV collagen α3-α5 chains (α3-α5(IV)), which disrupts trimerization, leading to glomerular basement membrane degeneration. Correcting the trimerization of α3/α4/α5 chain is a feasible therapeutic approach, but is hindered by lack of informati...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2018.02.003

    authors: Omachi K,Kamura M,Teramoto K,Kojima H,Yokota T,Kaseda S,Kuwazuru J,Fukuda R,Koyama K,Matsuyama S,Motomura K,Shuto T,Suico MA,Kai H

    更新日期:2018-05-17 00:00:00

  • Principles of Chemical Biology: Iron and CSCs, Histone Acylation sans Enzymes, Eliciting Silent Gene Clusters, and 2'-deoxy-ADPR as a Second Messenger.

    abstract::This month: Lysosomal iron linked to cell death in cancer stem cells, non-enzymatic catalyst SynCAc for histone acylation, cytotoxins ivermectin and etoposide bring new anti-fungals out of the crypt, and 2'-deoxy-ADPR as second messenger activating TRPM2. ...

    journal_title:Cell chemical biology

    pub_type:

    doi:10.1016/j.chembiol.2017.07.016

    authors:

    更新日期:2017-08-17 00:00:00

  • The High Genetic Barrier of EFdA/MK-8591 Stems from Strong Interactions with the Active Site of Drug-Resistant HIV-1 Reverse Transcriptase.

    abstract::4'-Ethynyl-2-fluoro-2'-deoxyadenosine (EFdA/MK-8591), a nucleoside reverse transcriptase inhibitor (NRTI) under clinical trials, is a potent and promising long-acting anti-HIV type 1 (HIV-1) agent. EFdA and its derivatives possess a modified 4'-moiety and potently inhibit the replication of a wide spectrum of HIV-1 st...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2018.07.014

    authors: Takamatsu Y,Das D,Kohgo S,Hayashi H,Delino NS,Sarafianos SG,Mitsuya H,Maeda K

    更新日期:2018-10-18 00:00:00

  • Selective Covalent Targeting of Anti-Apoptotic BFL-1 by Cysteine-Reactive Stapled Peptide Inhibitors.

    abstract::Anti-apoptotic BCL-2 family proteins block cell death by trapping the critical α-helical BH3 domains of pro-apoptotic members in a surface groove. Cancer cells hijack this survival mechanism by overexpressing a spectrum of anti-apoptotic members, mounting formidable apoptotic blockades that resist chemotherapeutic tre...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2016.07.022

    authors: Huhn AJ,Guerra RM,Harvey EP,Bird GH,Walensky LD

    更新日期:2016-09-22 00:00:00

  • "Expand and Click": A New Method for Labeling HIV-1 Envelope Glycoproteins.

    abstract::In this issue of Cell Chemical Biology, Sakin et al. (2017) investigate the nanoscale behavior of the HIV-1 envelope (Env) glycoprotein complex by using genetic code expansion, bioorthogonal amino acids, synthetic dyes, and click chemistry. This minimally invasive approach allows the measurement of native Env cellular...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2017.05.006

    authors: Fernandez MV,Freed EO

    更新日期:2017-05-18 00:00:00

  • AKAP95 Organizes a Nuclear Microdomain to Control Local cAMP for Regulating Nuclear PKA.

    abstract::Contrary to the classic model of protein kinase A (PKA) residing outside of the nucleus, we identify a nuclear signaling complex that consists of AKAP95, PKA, and PDE4D5 and show that it forms a functional cyclic AMP (cAMP) signaling microdomain. Locally generated cAMP can accumulate within the vicinity of this comple...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2019.03.003

    authors: Clister T,Greenwald EC,Baillie GS,Zhang J

    更新日期:2019-06-20 00:00:00

  • Discovery of an Unnatural DNA Modification Derived from a Natural Secondary Metabolite.

    abstract::Despite widespread interest for understanding how modified bases have evolved their contemporary functions, limited experimental evidence exists for measuring how close an organism is to accidentally creating a new, modified base within the framework of its existing genome. Here, we describe the biochemical and struct...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2020.09.006

    authors: Wang T,Kohli RM

    更新日期:2021-01-21 00:00:00

  • Light-Activated Chemotaxis.

    abstract::Using light to control cellular processes is one of the attractive areas of research. Here, availability of different, light-responsive caged compounds has played a critical role. In this issue of Cell Chemical Biology, Hövelmann et al. (2016) give us an example of how to design and use caged lipids to guide chemotaxi...

    journal_title:Cell chemical biology

    pub_type: 评论,杂志文章

    doi:10.1016/j.chembiol.2016.05.003

    authors: Dore TM

    更新日期:2016-05-19 00:00:00

  • Functional mimicry revealed by the crystal structure of an eIF4A:RNA complex bound to the interfacial inhibitor, desmethyl pateamine A.

    abstract::Interfacial inhibitors exert their biological effects through co-association with two macromolecules. The pateamine A (PatA) class of molecules function by stabilizing eukaryotic initiation factor (eIF) 4A RNA helicase onto RNA, resulting in translation initiation inhibition. Here, we present the crystal structure of ...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2020.12.006

    authors: Naineni SK,Liang J,Hull K,Cencic R,Zhu M,Northcote P,Teesdale-Spittle P,Romo D,Nagar B,Pelletier J

    更新日期:2021-01-05 00:00:00

  • Small-Molecule Targets in Immuno-Oncology.

    abstract::Advances in understanding the role and molecular mechanisms underlying immune surveillance and control of (pre)malignancies is revolutionizing clinical practice in the treatment of cancer. Presently, multiple biologic drugs targeting the immune checkpoint proteins PD(L)1 or CTLA4 have been approved and/or are in advan...

    journal_title:Cell chemical biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.chembiol.2017.08.019

    authors: Dhanak D,Edwards JP,Nguyen A,Tummino PJ

    更新日期:2017-09-21 00:00:00

  • A Genetic Toggle for Chemical Control of Individual Plk1 Substrates.

    abstract::Polo-like kinase 1 has hundreds of substrates and multiple functions that operate within the ∼60 min of mitosis. Herein, we describe a chemical-genetic system that allows particular substrates to be "toggled" into or out of chemical control using engineered phosphoacceptor selectivity. Biochemical assays and phosphopr...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2020.01.007

    authors: Johnson JM,Hebert AS,Drane QH,Lera RF,Wan J,Weaver BA,Coon JJ,Burkard ME

    更新日期:2020-03-19 00:00:00

  • More than One Way to Skin a Catalyst.

    abstract::In this issue of Cell Chemical Biology, Diaz et al. (2017) report a strategy to achieve temporal, spatial, and stoichiometric control over the protein kinase cAbl in living cells. They achieve this by splitting cAbl into two inactive fragments that form an active kinase upon small molecule addition, potentially provid...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2017.10.004

    authors: Michnick SW

    更新日期:2017-10-19 00:00:00

  • Structural and Biochemical Studies of Non-native Agonists of the LasR Quorum-Sensing Receptor Reveal an L3 Loop "Out" Conformation for LasR.

    abstract::Chemical strategies to block quorum sensing (QS) could provide a route to attenuate virulence in bacterial pathogens. Considerable research has focused on this approach in Pseudomonas aeruginosa, which uses the LuxR-type receptor LasR to regulate much of its QS network. Non-native ligands that antagonize LasR have bee...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2018.06.007

    authors: O'Reilly MC,Dong SH,Rossi FM,Karlen KM,Kumar RS,Nair SK,Blackwell HE

    更新日期:2018-09-20 00:00:00