Critical role of AMPK in redox regulation under glucose starvation.

Abstract:

:Glucose starvation is one of the major forms of metabolic stress in cancer cells. Deprivation of glucose impairs glycolysis and the pentose phosphate pathway, which elicits oxidative stress due to enhanced production of reactive oxygen species (ROS) and impaired antioxidant system, leading to redox imbalance and cell death. Under glucose starvation, the 5' AMP-activated protein kinase (AMPK) plays a critical role in maintaining redox homeostasis and cell survival via multiple pathways, such as regulation of fatty acid metabolism and antioxidant response. Convergence of ROS and the glucose metabolic pathway reveals novel molecular targets for the development of effective cancer therapeutic strategies. Interestingly, AMPK, along with its upstream kinase liver kinase B1 (LKB1), has been regarded to play a tumor suppressor role. However, emerging studies have provided novel insights into the pro-tumor survival function of the LKB1-AMPK pathway. Therefore, targeting metabolic and oxidative stress in cancer cells, with manipulation of AMPK activity, is a promising strategy in developing novel cancer therapeutic agents.

journal_name

Redox Biol

journal_title

Redox biology

authors

Ren Y,Shen HM

doi

10.1016/j.redox.2019.101154

subject

Has Abstract

pub_date

2019-07-01 00:00:00

pages

101154

issn

2213-2317

pii

S2213-2317(18)31097-8

journal_volume

25

pub_type

杂志文章,评审
  • Oxidation of protein disulfide bonds by singlet oxygen gives rise to glutathionylated proteins.

    abstract::Disulfide bonds play a key function in determining the structure of proteins, and are the most strongly conserved compositional feature across proteomes. They are particularly common in extracellular environments, such as the extracellular matrix and plasma, and in proteins that have structural (e.g. matrix) or bindin...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101822

    authors: Jiang S,Carroll L,Rasmussen LM,Davies MJ

    更新日期:2021-01-01 00:00:00

  • Modulation of FLT3 signal transduction through cytoplasmic cysteine residues indicates the potential for redox regulation.

    abstract::Oxidative modification of cysteine residues has been shown to regulate the activity of several protein-tyrosine kinases. We explored the possibility that Fms-like tyrosine kinase 3 (FLT3), a hematopoietic receptor-tyrosine kinase, is subject to this type of regulation. An underlying rationale was that the FLT3 gene is...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101325

    authors: Böhmer A,Barz S,Schwab K,Kolbe U,Gabel A,Kirkpatrick J,Ohlenschläger O,Görlach M,Böhmer FD

    更新日期:2020-01-01 00:00:00

  • Impact of glutathione supplementation of parenteral nutrition on hepatic methionine adenosyltransferase activity.

    abstract:BACKGROUND:The oxidation of the methionine adenosyltransferase (MAT) by the combined impact of peroxides contaminating parenteral nutrition (PN) and oxidized redox potential of glutathione is suspected to explain its inhibition observed in animals. A modification of MAT activity is suspected to be at origin of the PN-a...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2015.12.003

    authors: Elremaly W,Mohamed I,Rouleau T,Lavoie JC

    更新日期:2016-08-01 00:00:00

  • Redox-dependent condensation of the mycobacterial nucleoid by WhiB4.

    abstract::Oxidative stress response in bacteria is mediated through coordination between the regulators of oxidant-remediation systems (e.g. OxyR, SoxR) and nucleoid condensation (e.g. Dps, Fis). However, these genetic factors are either absent or rendered non-functional in the human pathogen Mycobacterium tuberculosis (Mtb). T...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.08.006

    authors: Chawla M,Mishra S,Anand K,Parikh P,Mehta M,Vij M,Verma T,Singh P,Jakkala K,Verma HN,AjitKumar P,Ganguli M,Narain Seshasayee AS,Singh A

    更新日期:2018-10-01 00:00:00

  • Redox status in mammalian cells and stem cells during culture in vitro: critical roles of Nrf2 and cystine transporter activity in the maintenance of redox balance.

    abstract::Culturing cells and tissues in vitro has provided valuable insights into the molecular mechanisms regulating redox signaling in cells with implications for medicine. However, standard culture techniques maintain mammalian cells in vitro under an artificial physicochemical environment such as ambient air and 5% CO2. Ox...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2014.04.008

    authors: Ishii T,Mann GE

    更新日期:2014-04-18 00:00:00

  • Differentiating between apparent and actual rates of H2O2 metabolism by isolated rat muscle mitochondria to test a simple model of mitochondria as regulators of H2O2 concentration.

    abstract::Mitochondria are often regarded as a major source of reactive oxygen species (ROS) in animal cells, with H2O2 being the predominant ROS released from mitochondria; however, it has been recently demonstrated that energized brain mitochondria may act as stabilizers of H2O2 concentration (Starkov et al. [1]) based on the...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2015.05.001

    authors: Treberg JR,Munro D,Banh S,Zacharias P,Sotiri E

    更新日期:2015-08-01 00:00:00

  • A versatile EPR toolbox for the simultaneous measurement of oxygen consumption and superoxide production.

    abstract::In this paper, we describe an assay to analyze simultaneously the oxygen consumption rate (OCR) and superoxide production in a biological system. The analytical set-up uses electron paramagnetic resonance (EPR) spectroscopy with two different isotopically-labelled sensors: 15N-PDT (4-oxo-2,2,6,6-tetramethylpiperidine-...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101852

    authors: Donatienne d'Hose,Danhier P,Northshield H,Isenborghs P,Jordan BF,Gallez B

    更新日期:2020-12-28 00:00:00

  • Vitamin D receptor activation regulates microglia polarization and oxidative stress in spontaneously hypertensive rats and angiotensin II-exposed microglial cells: Role of renin-angiotensin system.

    abstract::Hypertension is one of the major predisposing factors for neurodegenerative disease characterized with activated renin-angiotensin system (RAS) in both periphery and brain. Vitamin D (VitD) is recently recognized as a pleiotropic hormone with strong neuroprotective properties. While multiple lines of evidence suggest ...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101295

    authors: Cui C,Xu P,Li G,Qiao Y,Han W,Geng C,Liao D,Yang M,Chen D,Jiang P

    更新日期:2019-09-01 00:00:00

  • Characterization of the impact of glutaredoxin-2 (GRX2) deficiency on superoxide/hydrogen peroxide release from cardiac and liver mitochondria.

    abstract::Mitochondria are critical sources of hydrogen peroxide (H2O2), an important secondary messenger in mammalian cells. Recent work has shown that O2•-/H2O2 emission from individual sites of production in mitochondria is regulated by protein S-glutathionylation. Here, we conducted the first examination of O2•-/H2O2 releas...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.12.006

    authors: Chalker J,Gardiner D,Kuksal N,Mailloux RJ

    更新日期:2018-05-01 00:00:00

  • DNA hypermethylation: A novel mechanism of CREG gene suppression and atherosclerogenic endothelial dysfunction.

    abstract:OBJECTIVE:Cellular repressor of E1A-stimulated genes (CREG), a vasculoprotective molecule, is significantly downregulated in atherosclerotic vessels through unclear mechanisms. While epigenetic regulation is involved in atherosclerosis development, it is not known if the CREG gene is epigenetically regulated. The aim o...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101444

    authors: Liu Y,Tian X,Liu S,Liu D,Li Y,Liu M,Zhang X,Yan C,Han Y

    更新日期:2020-05-01 00:00:00

  • Redox mechanisms in age-related lung fibrosis.

    abstract::Redox signaling and oxidative stress are associated with tissue fibrosis and aging. Aging is recognized as a major risk factor for fibrotic diseases involving multiple organ systems, including that of the lung. A number of oxidant generating enzymes are upregulated while antioxidant defenses are deficient with aging a...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2016.06.005

    authors: Kurundkar A,Thannickal VJ

    更新日期:2016-10-01 00:00:00

  • Activation of the mechanosensitive Ca2+ channel TRPV4 induces endothelial barrier permeability via the disruption of mitochondrial bioenergetics.

    abstract::Mechanical ventilation is a life-saving intervention in critically ill patients with respiratory failure due to acute respiratory distress syndrome (ARDS), a refractory lung disease with an unacceptable high mortality rate. Paradoxically, mechanical ventilation also creates excessive mechanical stress that directly au...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101785

    authors: Lu Q,Zemskov EA,Sun X,Wang H,Yegambaram M,Wu X,Garcia-Flores A,Song S,Tang H,Kangath A,Cabanillas GZ,Yuan JX,Wang T,Fineman JR,Black SM

    更新日期:2021-01-01 00:00:00

  • Total sulfane sulfur bioavailability reflects ethnic and gender disparities in cardiovascular disease.

    abstract::Hydrogen sulfide (H2S) has emerged as an important physiological and pathophysiological signaling molecule in the cardiovascular system influencing vascular tone, cytoprotective responses, redox reactions, vascular adaptation, and mitochondrial respiration. However, bioavailable levels of H2S in its various biochemica...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.01.007

    authors: Rajpal S,Katikaneni P,Deshotels M,Pardue S,Glawe J,Shen X,Akkus N,Modi K,Bhandari R,Dominic P,Reddy P,Kolluru GK,Kevil CG

    更新日期:2018-05-01 00:00:00

  • Role of nitrite, urate and pepsin in the gastroprotective effects of saliva.

    abstract::Dietary nitrate is now recognized as an alternative substrate for nitric oxide (•NO) production in the gut. This novel pathway implies the sequential reduction of nitrate to nitrite, •NO and other bioactive nitrogen oxides but the physiological relevance of these oxidants has remained elusive. We have previously shown...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2016.04.002

    authors: Rocha BS,Lundberg JO,Radi R,Laranjinha J

    更新日期:2016-08-01 00:00:00

  • NRF2 and NF-қB interplay in cerebrovascular and neurodegenerative disorders: Molecular mechanisms and possible therapeutic approaches.

    abstract::Electrophiles and reactive oxygen species (ROS) play a major role in modulating cellular defense mechanisms as well as physiological functions, and intracellular signaling. However, excessive ROS generation (endogenous and exogenous) can create a state of redox imbalance leading to cellular and tissue damage (Ma and H...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2018.11.017

    authors: Sivandzade F,Prasad S,Bhalerao A,Cucullo L

    更新日期:2019-02-01 00:00:00

  • Inhibition of Brd4 alleviates renal ischemia/reperfusion injury-induced apoptosis and endoplasmic reticulum stress by blocking FoxO4-mediated oxidative stress.

    abstract::Ischemia/reperfusion injury (I/R) is one of the leading causes of acute kidney injury (AKI) that typically occurs in renal surgeries. However, renal I/R still currently lacks effective therapeutic targets. In this study, we proved that inhibition of Brd4 with its selective inhibitor, JQ1, could exert a protective role...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101195

    authors: Liu H,Wang L,Weng X,Chen H,Du Y,Diao C,Chen Z,Liu X

    更新日期:2019-06-01 00:00:00

  • Pleiotropic effects of 4-hydroxynonenal on oxidative burst and phagocytosis in neutrophils.

    abstract::Metabolic control of cellular function is significant in the context of inflammation-induced metabolic dysregulation in immune cells. Generation of reactive oxygen species (ROS) such as hydrogen peroxide and superoxide are one of the critical events that modulate the immune response in neutrophils. When activated, neu...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2016.06.003

    authors: Chacko BK,Wall SB,Kramer PA,Ravi S,Mitchell T,Johnson MS,Wilson L,Barnes S,Landar A,Darley-Usmar VM

    更新日期:2016-10-01 00:00:00

  • miR-200a-5p regulates myocardial necroptosis induced by Se deficiency via targeting RNF11.

    abstract::Necroptosis has been discovered as a new paradigm of cell death and may play a key role in heart disease and selenium (Se) deficiency. Hence, we detected the specific microRNA (miRNA) in response to Se-deficient heart using microRNAome analysis. For high-throughput sequencing using Se-deficient chicken cardiac tissue,...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.11.025

    authors: Yang T,Cao C,Yang J,Liu T,Lei XG,Zhang Z,Xu S

    更新日期:2018-05-01 00:00:00

  • Ozone inhalation modifies the rat liver proteome.

    abstract::Ozone (O3) is a serious public health concern. Recent findings indicate that the damaging health effects of O3 extend to multiple systemic organ systems. Herein, we hypothesize that O3 inhalation will cause downstream alterations to the liver. To test this, male Sprague-Dawley rats were exposed to 0.5ppm O3 for 8h/day...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2013.11.006

    authors: Theis WS,Andringa KK,Millender-Swain T,Dickinson DA,Postlethwait EM,Bailey SM

    更新日期:2014-01-01 00:00:00

  • L-dehydroascorbic acid can substitute l-ascorbic acid as dietary vitamin C source in guinea pigs.

    abstract::Vitamin C deficiency globally affects several hundred million people and has been associated with increased morbidity and mortality in numerous studies. In this study, bioavailability of the oxidized form of vitamin C (l-dehydroascorbic acid or DHA)-commonly found in vitamin C containing food products prone to oxidati...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2015.11.003

    authors: Frikke-Schmidt H,Tveden-Nyborg P,Lykkesfeldt J

    更新日期:2016-04-01 00:00:00

  • Do free radical NETwork and oxidative stress disparities in African Americans enhance their vulnerability to SARS-CoV-2 infection and COVID-19 severity?

    abstract::This review focuses on the hypothetical mechanisms for enhanced vulnerability of African Americans to SARS-CoV-2 infection, COVID-19 severity, and increased deaths. A disproportionately higher number of African Americans are afflicted with autoimmune and inflammatory diseases (e.g., diabetes, hypertension, obesity), a...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2020.101721

    authors: Kalyanaraman B

    更新日期:2020-10-01 00:00:00

  • A novel role for NUPR1 in the keratinocyte stress response to UV oxidized phospholipids.

    abstract::Ultraviolet light is the dominant environmental oxidative skin stressor and a major skin aging factor. We studied which oxidized phospholipid (OxPL) mediators would be generated in primary human keratinocytes (KC) upon exposure to ultraviolet A light (UVA) and investigated the contribution of OxPL to UVA responses. Ma...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.11.006

    authors: Narzt MS,Nagelreiter IM,Oskolkova O,Bochkov VN,Latreille J,Fedorova M,Ni Z,Sialana FJ,Lubec G,Filzwieser M,Laggner M,Bilban M,Mildner M,Tschachler E,Grillari J,Gruber F

    更新日期:2019-01-01 00:00:00

  • Exercise, redox homeostasis and the epigenetic landscape.

    abstract::Physical exercise represents one of the strongest physiological stimuli capable to induce functional and structural modifications in all biological systems. Indeed, beside the traditional genetic mechanisms, physical exercise can modulate gene expression through epigenetic modifications, namely DNA methylation, post-t...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2020.101477

    authors: Dimauro I,Paronetto MP,Caporossi D

    更新日期:2020-08-01 00:00:00

  • Mitochondrial dynamics and mitochondrial quality control.

    abstract::Mitochondria are cellular energy powerhouses that play important roles in maintaining cell survival, cell death and cellular metabolic homeostasis. Timely removal of damaged mitochondria via autophagy (mitophagy) is thus critical for cellular homeostasis and function. Mitochondria are reticular organelles that have hi...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2014.11.006

    authors: Ni HM,Williams JA,Ding WX

    更新日期:2015-01-01 00:00:00

  • Redox balance influences differentiation status of neuroblastoma in the presence of all-trans retinoic acid.

    abstract::Neuroblastoma is the most common extra-cranial solid tumor in childhood; and patients in stage IV of the disease have a high propensity for tumor recurrence. Retinoid therapy has been utilized as a means to induce differentiation of tumor cells and to inhibit relapse. In this study, the expression of a common neuronal...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2015.11.012

    authors: Silvis AM,McCormick ML,Spitz DR,Kiningham KK

    更新日期:2016-04-01 00:00:00

  • Redox regulation of ischemic limb neovascularization - What we have learned from animal studies.

    abstract::Mouse hindlimb ischemia has been widely used as a model to study peripheral artery disease. Genetic modulation of the enzymatic source of oxidants or components of the antioxidant system reveal that physiological levels of oxidants are essential to promote the process of arteriogenesis and angiogenesis after femoral a...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2017.04.040

    authors: Matsui R,Watanabe Y,Murdoch CE

    更新日期:2017-08-01 00:00:00

  • Reactive species generated by heme impair alveolar epithelial sodium channel function in acute respiratory distress syndrome.

    abstract::We previously reported that the highly reactive cell-free heme (CFH) is increased in the plasma of patients with chronic lung injury and causes pulmonary edema in animal model of acute respiratory distress syndrome (ARDS) post inhalation of halogen gas. However, the mechanisms by which CFH causes pulmonary edema are u...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101592

    authors: Aggarwal S,Lazrak A,Ahmad I,Yu Z,Bryant A,Mobley JA,Ford DA,Matalon S

    更新日期:2020-09-01 00:00:00

  • Simvastatin and oxidative stress in humans: A randomized, double-blinded, placebo-controlled clinical trial.

    abstract::Simvastatin reduces the blood concentration of cholesterol by inhibiting hydroxymethylglutaryl-coenzyme A reductase, the rate-limiting enzyme in cholesterol synthesis, and thereby reduces the risk of cardiovascular disease. In addition, simvastatin treatment leads to a reduction in fluxes in mitochondrial respiratory ...

    journal_title:Redox biology

    pub_type: 临床试验,杂志文章,随机对照试验

    doi:10.1016/j.redox.2016.05.007

    authors: Rasmussen ST,Andersen JT,Nielsen TK,Cejvanovic V,Petersen KM,Henriksen T,Weimann A,Lykkesfeldt J,Poulsen HE

    更新日期:2016-10-01 00:00:00

  • Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species.

    abstract::Mitochondria fulfill a number of biological functions which inherently depend on ATP and O2(-•)/H2O2 production. Both ATP and O2(-•)/H2O2 are generated by electron transfer reactions. ATP is the product of oxidative phosphorylation whereas O2(-•) is generated by singlet electron reduction of di-oxygen (O2). O2(-•) is ...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2015.02.001

    authors: Mailloux RJ

    更新日期:2015-01-01 00:00:00

  • Elastin aging and lipid oxidation products in human aorta.

    abstract::Vascular aging is associated with structural and functional modifications of the arteries, and by an increase in arterial wall thickening in the intima and the media, mainly resulting from structural modifications of the extracellular matrix (ECM) components. Among the factors known to accumulate with aging, advanced ...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2014.12.008

    authors: Zarkovic K,Larroque-Cardoso P,Pucelle M,Salvayre R,Waeg G,Nègre-Salvayre A,Zarkovic N

    更新日期:2015-01-01 00:00:00