Impact of glutathione supplementation of parenteral nutrition on hepatic methionine adenosyltransferase activity.

Abstract:

BACKGROUND:The oxidation of the methionine adenosyltransferase (MAT) by the combined impact of peroxides contaminating parenteral nutrition (PN) and oxidized redox potential of glutathione is suspected to explain its inhibition observed in animals. A modification of MAT activity is suspected to be at origin of the PN-associated liver disease as observed in newborns. We hypothesized that the correction of redox potential of glutathione by adding glutathione in PN protects the MAT activity. AIM:To investigate whether the addition of glutathione to PN can reverse the inhibition of MAT observed in animal on PN. METHODS:Three days old guinea pigs received through a jugular vein catheter 2 series of solutions. First with methionine supplement, (1) Sham (no infusion); (2) PN: amino acids, dextrose, lipids and vitamins; (3) PN-GSSG: PN+10μM GSSG. Second without methionine, (4) D: dextrose; (5) D+180μM ascorbylperoxide; (6) D+350μM H2O2. Four days later, liver was sampled for determination of redox potential of glutathione and MAT activity in the presence or absence of 1mM DTT. Data were compared by ANOVA, p<0.05. RESULTS:MAT activity was 45±4% lower in animal infused with PN and 23±7% with peroxides generated in PN. The inhibition by peroxides was associated with oxidized redox potential and was reversible by DTT. Correction of redox potential (PN+GSSG) or DTT was without effect on the inhibition of MAT by PN. The slope of the linear relation between MAT activity and redox potential was two fold lower in animal infused with PN than in others groups. CONCLUSION:The present study suggests that prevention of peroxide generation in PN and/or correction of the redox potential by adding glutathione in PN are not sufficient, at least in newborn guinea pigs, to restore normal MAT activity.

journal_name

Redox Biol

journal_title

Redox biology

authors

Elremaly W,Mohamed I,Rouleau T,Lavoie JC

doi

10.1016/j.redox.2015.12.003

subject

Has Abstract

pub_date

2016-08-01 00:00:00

pages

18-23

issn

2213-2317

pii

S2213-2317(15)30018-5

journal_volume

8

pub_type

杂志文章
  • Keap1 controls protein S-nitrosation and apoptosis-senescence switch in endothelial cells.

    abstract::Premature senescence, a death escaping pathway for cells experiencing stress, is conducive to aging and cardiovascular diseases. The molecular switch between senescent and apoptotic fate remains, however, poorly recognized. Nrf2 is an important transcription factor orchestrating adaptive response to cellular stress. H...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101304

    authors: Kopacz A,Klóska D,Proniewski B,Cysewski D,Personnic N,Piechota-Polańczyk A,Kaczara P,Zakrzewska A,Forman HJ,Dulak J,Józkowicz A,Grochot-Przęczek A

    更新日期:2020-01-01 00:00:00

  • HIV TAT-mediated microglial senescence: Role of SIRT3-dependent mitochondrial oxidative stress.

    abstract::The advent of combined antiretroviral treatment (cART) as a treatment for HIV-1 infection has not only resulted in a dramatic decrease in the peripheral viral load but has also led to increased life expectancy of the infected individuals. Paradoxically, increased lifespan is accompanied with higher prevalence of age-r...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101843

    authors: Thangaraj A,Chivero ET,Tripathi A,Singh S,Niu F,Guo ML,Pillai P,Periyasamy P,Buch S

    更新日期:2020-12-23 00:00:00

  • Evaluating The Role Of Nitric Oxide Synthase In Oncogenic Ras-Driven Tumorigenesis.

    abstract::We previously reported that oncogenic KRAS activation of the PI3K/AKT pathway stimulates the remaining wild-type HRAS and NRAS proteins in a manner dependent upon both eNOS expression and C118 in HRAS and NRAS, which promoted tumor growth. Interestingly however, we recently found that loss of wild-type HRAS, NRAS, and...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2015.09.023

    authors: Counter C

    更新日期:2015-08-01 00:00:00

  • Redox regulation of genome stability by effects on gene expression, epigenetic pathways and DNA damage/repair.

    abstract::Reactive oxygen and nitrogen species (e.g. H2O2, nitric oxide) confer redox regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. In addition, classical regulation of gene expression or activity, including gene transcription to RNA followed by transla...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2015.05.008

    authors: Mikhed Y,Görlach A,Knaus UG,Daiber A

    更新日期:2015-08-01 00:00:00

  • DNA hypermethylation: A novel mechanism of CREG gene suppression and atherosclerogenic endothelial dysfunction.

    abstract:OBJECTIVE:Cellular repressor of E1A-stimulated genes (CREG), a vasculoprotective molecule, is significantly downregulated in atherosclerotic vessels through unclear mechanisms. While epigenetic regulation is involved in atherosclerosis development, it is not known if the CREG gene is epigenetically regulated. The aim o...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101444

    authors: Liu Y,Tian X,Liu S,Liu D,Li Y,Liu M,Zhang X,Yan C,Han Y

    更新日期:2020-05-01 00:00:00

  • Winter to summer change in vitamin D status reduces systemic inflammation and bioenergetic activity of human peripheral blood mononuclear cells.

    abstract:BACKGROUND:Vitamin D status [25(OH)D] has recently been reported to be associated with altered cellular bioenergetic profiles of peripheral blood mononuclear cells (PBMCs). No study has tracked the seasonal variation of 25(OH)D and its putative influence on whole body energy metabolism, cellular bioenergetic profiles, ...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.04.009

    authors: Calton EK,Keane KN,Raizel R,Rowlands J,Soares MJ,Newsholme P

    更新日期:2017-08-01 00:00:00

  • Single cell-based fluorescence lifetime imaging of intracellular oxygenation and metabolism.

    abstract::Oxidation-reduction chemistry is fundamental to the metabolism of all living organisms, and hence quantifying the principal redox players is important for a comprehensive understanding of cell metabolism in normal and pathological states. In mammalian cells, this is accomplished by measuring oxygen partial pressure (p...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101549

    authors: Penjweini R,Roarke B,Alspaugh G,Gevorgyan A,Andreoni A,Pasut A,Sackett DL,Knutson JR

    更新日期:2020-07-01 00:00:00

  • Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species.

    abstract::Mitochondria fulfill a number of biological functions which inherently depend on ATP and O2(-•)/H2O2 production. Both ATP and O2(-•)/H2O2 are generated by electron transfer reactions. ATP is the product of oxidative phosphorylation whereas O2(-•) is generated by singlet electron reduction of di-oxygen (O2). O2(-•) is ...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2015.02.001

    authors: Mailloux RJ

    更新日期:2015-01-01 00:00:00

  • Neuronal vulnerability to fetal hypoxia-reoxygenation injury and motor deficit development relies on regional brain tetrahydrobiopterin levels.

    abstract::Hypertonia is pathognomonic of cerebral palsy (CP), often caused by brain injury before birth. To understand the early driving events of hypertonia, we utilized magnetic resonance imaging (MRI) assessment of early critical brain injury in rabbit fetuses (79% term) that will predict hypertonia after birth following ant...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101407

    authors: Vasquez-Vivar J,Shi Z,Jeong JW,Luo K,Sharma A,Thirugnanam K,Tan S

    更新日期:2020-01-01 00:00:00

  • Tumor cells have decreased ability to metabolize H2O2: Implications for pharmacological ascorbate in cancer therapy.

    abstract::Ascorbate (AscH-) functions as a versatile reducing agent. At pharmacological doses (P-AscH-; [plasma AscH-] ≥≈20mM), achievable through intravenous delivery, oxidation of P-AscH- can produce a high flux of H2O2 in tumors. Catalase is the major enzyme for detoxifying high concentrations of H2O2. We hypothesize that se...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2016.10.010

    authors: Doskey CM,Buranasudja V,Wagner BA,Wilkes JG,Du J,Cullen JJ,Buettner GR

    更新日期:2016-12-01 00:00:00

  • Nitrate decreases xanthine oxidoreductase-mediated nitrite reductase activity and attenuates vascular and blood pressure responses to nitrite.

    abstract::Nitrite and nitrate restore deficient endogenous nitric oxide (NO) production as they are converted back to NO, and therefore complement the classic enzymatic NO synthesis. Circulating nitrate and nitrite must cross membrane barriers to produce their effects and increased nitrate concentrations may attenuate the nitri...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.03.003

    authors: Damacena-Angelis C,Oliveira-Paula GH,Pinheiro LC,Crevelin EJ,Portella RL,Moraes LAB,Tanus-Santos JE

    更新日期:2017-08-01 00:00:00

  • Ferroptosis is governed by differential regulation of transcription in liver cancer.

    abstract::Ferroptosis is an outcome of metabolic disorders and closely linked to liver cancer. However, the mechanism underlying the fine regulation of ferroptosis in liver cancer remains unclear. Here, we have identified two categories of genes: ferroptosis up-regulated factors (FUF) and ferroptosis down-regulated factors (FDF...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101211

    authors: Zhang X,Du L,Qiao Y,Zhang X,Zheng W,Wu Q,Chen Y,Zhu G,Liu Y,Bian Z,Guo S,Yang Y,Ma L,Yu Y,Pan Q,Sun F,Wang J

    更新日期:2019-06-01 00:00:00

  • Quantifying intracellular hydrogen peroxide perturbations in terms of concentration.

    abstract::Molecular level, mechanistic understanding of the roles of reactive oxygen species (ROS) in a variety of pathological conditions is hindered by the difficulties associated with determining the concentration of various ROS species. Here, we present an approach that converts fold-change in the signal from an intracellul...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2014.08.001

    authors: Huang BK,Sikes HD

    更新日期:2014-01-01 00:00:00

  • Differentiating between apparent and actual rates of H2O2 metabolism by isolated rat muscle mitochondria to test a simple model of mitochondria as regulators of H2O2 concentration.

    abstract::Mitochondria are often regarded as a major source of reactive oxygen species (ROS) in animal cells, with H2O2 being the predominant ROS released from mitochondria; however, it has been recently demonstrated that energized brain mitochondria may act as stabilizers of H2O2 concentration (Starkov et al. [1]) based on the...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2015.05.001

    authors: Treberg JR,Munro D,Banh S,Zacharias P,Sotiri E

    更新日期:2015-08-01 00:00:00

  • A novel S-sulfhydrated human serum albumin preparation suppresses melanin synthesis.

    abstract::Products of ultraviolet (UV) irradiation such as reactive oxygen species (ROS) and nitric oxide (NO) stimulate melanin synthesis. Reactive sulfur species (RSS) have been shown to have strong ROS and NO scavenging effects. However, the instability and low retention of RSS limit their use as inhibitors of melanin synthe...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.10.007

    authors: Ikeda M,Ishima Y,Kinoshita R,Chuang VTG,Tasaka N,Matsuo N,Watanabe H,Shimizu T,Ishida T,Otagiri M,Maruyama T

    更新日期:2018-04-01 00:00:00

  • Mapping the phenotypic repertoire of the cytoplasmic 2-Cys peroxiredoxin - Thioredoxin system. 1. Understanding commonalities and differences among cell types.

    abstract::The system (PTTRS) formed by typical 2-Cys peroxiredoxins (Prx), thioredoxin (Trx), Trx reductase (TrxR), and sulfiredoxin (Srx) is central in antioxidant protection and redox signaling in the cytoplasm of eukaryotic cells. Understanding how the PTTRS integrates these functions requires tracing phenotypes to molecular...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.12.008

    authors: Selvaggio G,Coelho PMBM,Salvador A

    更新日期:2018-05-01 00:00:00

  • Mechanisms by which heme oxygenase rescue renal dysfunction in obesity.

    abstract::Obesity and excessive inflammation/oxidative stress are pathophysiological forces associated with kidney dysfunction. Although we recently showed that heme-oxygenase (HO) improves renal functions, the mechanisms are largely unclear. Moreover, the effects of the HO-system on podocyte cytoskeletal proteins like podocin,...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2014.09.001

    authors: Ndisang JF,Tiwari S

    更新日期:2014-01-01 00:00:00

  • Classifying oxidative stress by F2-isoprostane levels across human diseases: A meta-analysis.

    abstract::The notion that oxidative stress plays a role in virtually every human disease and environmental exposure has become ingrained in everyday knowledge. However, mounting evidence regarding the lack of specificity of biomarkers traditionally used as indicators of oxidative stress in human disease and exposures now necess...

    journal_title:Redox biology

    pub_type: 杂志文章,meta分析

    doi:10.1016/j.redox.2017.03.024

    authors: van 't Erve TJ,Kadiiska MB,London SJ,Mason RP

    更新日期:2017-08-01 00:00:00

  • Sestrin2 modulates cardiac inflammatory response through maintaining redox homeostasis during ischemia and reperfusion.

    abstract::Ischemia heart disease is the leading cause of death world-widely and has increased prevalence and exacerbated myocardial infarction with aging. Sestrin2, a stress-inducible protein, declines with aging in the heart and the rescue of Sestrin2 in the aged mouse heart improves the resistance to ischemic insults caused b...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101556

    authors: Ren D,Quan N,Fedorova J,Zhang J,He Z,Li J

    更新日期:2020-07-01 00:00:00

  • Biochemical And Tumorigenic Effects Of Redox Modification Of Ras-G12c By Nitric Oxide.

    abstract:BACKGROUND:The Ras family of small GTPases cycle between an inactive, GDP-bound state and an active, GTP-bound state. When bound to GTP, Ras engages and activates a number of effectors that mediate proliferative and survival signals. Ras is mutated in over 30% of human cancers, usually at codons 12, 13, or 61, to remai...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2015.09.015

    authors: Crowe M

    更新日期:2015-08-01 00:00:00

  • Oxidative stress-induced premature senescence dysregulates VEGF and CFH expression in retinal pigment epithelial cells: Implications for Age-related Macular Degeneration.

    abstract::Oxidative stress has a critical role in the pathogenesis of Age-related Macular Degeneration (AMD), a multifactorial disease that includes age, gene variants of complement regulatory proteins and smoking as the main risk factors. Stress-induced premature cellular senescence (SIPS) is postulated to contribute to this c...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2015.11.011

    authors: Marazita MC,Dugour A,Marquioni-Ramella MD,Figueroa JM,Suburo AM

    更新日期:2016-04-01 00:00:00

  • Redox status in mammalian cells and stem cells during culture in vitro: critical roles of Nrf2 and cystine transporter activity in the maintenance of redox balance.

    abstract::Culturing cells and tissues in vitro has provided valuable insights into the molecular mechanisms regulating redox signaling in cells with implications for medicine. However, standard culture techniques maintain mammalian cells in vitro under an artificial physicochemical environment such as ambient air and 5% CO2. Ox...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2014.04.008

    authors: Ishii T,Mann GE

    更新日期:2014-04-18 00:00:00

  • Oxidative modification of lipoic acid by HNE in Alzheimer disease brain.

    abstract::Alzheimer disease (AD) is an age-related neurodegenerative disease characterized by the presence of three pathological hallmarks: synapse loss, extracellular senile plaques (SP) and intracellular neurofibrillary tangles (NFTs). The major component of SP is amyloid β-peptide (Aβ), which has been shown to induce oxidati...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2013.01.002

    authors: Hardas SS,Sultana R,Clark AM,Beckett TL,Szweda LI,Murphy MP,Butterfield DA

    更新日期:2013-01-30 00:00:00

  • Ozone inhalation modifies the rat liver proteome.

    abstract::Ozone (O3) is a serious public health concern. Recent findings indicate that the damaging health effects of O3 extend to multiple systemic organ systems. Herein, we hypothesize that O3 inhalation will cause downstream alterations to the liver. To test this, male Sprague-Dawley rats were exposed to 0.5ppm O3 for 8h/day...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2013.11.006

    authors: Theis WS,Andringa KK,Millender-Swain T,Dickinson DA,Postlethwait EM,Bailey SM

    更新日期:2014-01-01 00:00:00

  • Advanced glycation end products and protein carbonyl levels in plasma reveal sex-specific differences in Parkinson's and Alzheimer's disease.

    abstract::Neurodegenerative diseases (NDD) such as Alzheimer's (AD) and Parkinson's disease (PD) are distinct clinical entities, however, the aggregation of key neuronal proteins, presumably leading to neuronal demise appears to represent a common mechanism. It has become evident, that advanced glycation end products (AGEs) tri...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101546

    authors: Sharma A,Weber D,Raupbach J,Dakal TC,Fließbach K,Ramirez A,Grune T,Wüllner U

    更新日期:2020-07-01 00:00:00

  • Hydrogen peroxide as a signal for skeletal muscle adaptations to exercise: What do concentrations tell us about potential mechanisms?

    abstract::Hydrogen peroxide appears to be the key reactive oxygen species involved in redox signalling, but comparisons of the low concentrations of hydrogen peroxide that are calculated to exist within cells with those previously shown to activate common signalling events in vitro indicate that direct oxidation of key thiol gr...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2020.101484

    authors: Jackson MJ,Stretton C,McArdle A

    更新日期:2020-08-01 00:00:00

  • Inhibition of Brd4 alleviates renal ischemia/reperfusion injury-induced apoptosis and endoplasmic reticulum stress by blocking FoxO4-mediated oxidative stress.

    abstract::Ischemia/reperfusion injury (I/R) is one of the leading causes of acute kidney injury (AKI) that typically occurs in renal surgeries. However, renal I/R still currently lacks effective therapeutic targets. In this study, we proved that inhibition of Brd4 with its selective inhibitor, JQ1, could exert a protective role...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101195

    authors: Liu H,Wang L,Weng X,Chen H,Du Y,Diao C,Chen Z,Liu X

    更新日期:2019-06-01 00:00:00

  • Peroxiredoxin-mediated disulfide bond formation is required for nucleocytoplasmic translocation and secretion of HMGB1 in response to inflammatory stimuli.

    abstract::The nuclear protein HMGB1 (high mobility group box 1) is secreted by monocytes-macrophages in response to inflammatory stimuli and serves as a danger-associated molecular pattern. Acetylation and phosphorylation of HMGB1 are implicated in the regulation of its nucleocytoplasmic translocation for secretion, although in...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101203

    authors: Kwak MS,Kim HS,Lkhamsuren K,Kim YH,Han MG,Shin JM,Park IH,Rhee WJ,Lee SK,Rhee SG,Shin JS

    更新日期:2019-06-01 00:00:00

  • Sulfite-induced protein radical formation in LPS aerosol-challenged mice: Implications for sulfite sensitivity in human lung disease.

    abstract::Exposure to (bi)sulfite (HSO3-) and sulfite (SO32-) has been shown to induce a wide range of adverse reactions in sensitive individuals. Studies have shown that peroxidase-catalyzed oxidation of (bi)sulfite leads to formation of several reactive free radicals, such as sulfur trioxide anion (.SO3-), peroxymonosulfate (...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.12.014

    authors: Kumar A,Triquigneaux M,Madenspacher J,Ranguelova K,Bang JJ,Fessler MB,Mason RP

    更新日期:2018-05-01 00:00:00

  • Redox-dependent condensation of the mycobacterial nucleoid by WhiB4.

    abstract::Oxidative stress response in bacteria is mediated through coordination between the regulators of oxidant-remediation systems (e.g. OxyR, SoxR) and nucleoid condensation (e.g. Dps, Fis). However, these genetic factors are either absent or rendered non-functional in the human pathogen Mycobacterium tuberculosis (Mtb). T...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.08.006

    authors: Chawla M,Mishra S,Anand K,Parikh P,Mehta M,Vij M,Verma T,Singh P,Jakkala K,Verma HN,AjitKumar P,Ganguli M,Narain Seshasayee AS,Singh A

    更新日期:2018-10-01 00:00:00