Biochemical And Tumorigenic Effects Of Redox Modification Of Ras-G12c By Nitric Oxide.

Abstract:

BACKGROUND:The Ras family of small GTPases cycle between an inactive, GDP-bound state and an active, GTP-bound state. When bound to GTP, Ras engages and activates a number of effectors that mediate proliferative and survival signals. Ras is mutated in over 30% of human cancers, usually at codons 12, 13, or 61, to remain in this active, GTP-bound state, which promotes tumorigenesis. One of these oncogenic mutations that commonly occurs in lung cancer is G12C. Recently, it was shown that alkylating agents that react with the thiol functional group of this mutant amino acid can inactivate oncogenic RasG12C. AIMS:Given that Cys12 of RasG12C is accessible to thiol alkylating agents and forms interactions within the electrostatic phosphoryl-binding loop of Ras, we postulated that Cys12 may possess an altered pKa, potentially allowing this residue to be modified by NO and other cellular oxidants. METHODS:We conducted several biochemical analyses to determine whether nitrosylation of RasG12C alters its activity and structure in vitro. We also determined the biological effects of increasing NO production on the tumorigenic growth of cells transformed by RasG12C. RESULTS:We found that Cys12 has a depressed pKa of 7.4, which increases the susceptibility of the thiol to modification by oxidation or nitrosylation at physiological pH. We also found that coexpressing active eNOSS1177D and RasG12C accelerated tumorigenic growth of human and murine cell line xenografts. CONCLUSION:Modification of Cys12 in mutant, oncogenic RasG12C may promote its tumorigenic activity.

journal_name

Redox Biol

journal_title

Redox biology

authors

Crowe M

doi

10.1016/j.redox.2015.09.015

subject

Has Abstract

pub_date

2015-08-01 00:00:00

pages

414

issn

2213-2317

pii

S2213-2317(15)00126-3

journal_volume

5

pub_type

杂志文章
  • Altered glucose metabolism and cell function in keloid fibroblasts under hypoxia.

    abstract::Keloids exhibit metabolic reprogramming including enhanced glycolysis and attenuated oxidative phosphorylation. Hypoxia induces a series of protective responses in mammalian cells. However, the metabolic phenotype of keloid fibroblasts under hypoxic conditions remains to be elucidated. The present study aimed to inves...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101815

    authors: Wang Q,Wang P,Qin Z,Yang X,Pan B,Nie F,Bi H

    更新日期:2021-01-01 00:00:00

  • Artesunate-induced mitophagy alters cellular redox status.

    abstract::Artesunate (ART) is a prominent anti-malarial with significant anti-cancer properties. Our previous studies showed that ART enhances lysosomal function and ferritin degradation, which was necessary for its anti-cancer properties. ART targeting to mitochondria also significantly improved its efficacy, but the effect of...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.07.025

    authors: Zhang J,Sun X,Wang L,Wong YK,Lee YM,Zhou C,Wu G,Zhao T,Yang L,Lu L,Zhong J,Huang D,Wang J

    更新日期:2018-10-01 00:00:00

  • Synergistic antitumor activity of rapamycin and EF24 via increasing ROS for the treatment of gastric cancer.

    abstract::Mechanistic/mammalian target of rapamycin (mTOR) has emerged as a new potential therapeutic target for gastric cancer. Rapamycin and rapamycin analogs are undergoing clinical trials and have produced clinical responses in a subgroup of cancer patients. However, monotherapy with rapamycin at safe dosage fails to induce...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2016.09.006

    authors: Chen W,Zou P,Zhao Z,Chen X,Fan X,Vinothkumar R,Cui R,Wu F,Zhang Q,Liang G,Ji J

    更新日期:2016-12-01 00:00:00

  • Baicalin combats glutamate excitotoxicity via protecting glutamine synthetase from ROS-induced 20S proteasomal degradation.

    abstract:BACKGROUND:Many neuroprotective approaches targeting neurons in animal models fail to provide benefits for the treatment of ischemic stroke in clinic and glial cells have become the targets in some basic studies. Baicalin has neuroprotective effects but the mechanisms related to glial cells are not revealed. This study...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101559

    authors: Song X,Gong Z,Liu K,Kou J,Liu B,Liu K

    更新日期:2020-07-01 00:00:00

  • Nitric Oxide And Oxygen: Actions And Interactions In Health And Disease.

    abstract::Nitric oxide (NO) inhibits cell respiration reversibly and in competition with O2 through the inhibition of the mitochondrial cytochrome c oxidase (Complex IV). At concentrations lower than those required to inhibit respiration, endogenous NO enhances the reduction of the electron transport chain, thus enabling cells ...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2015.09.034

    authors: Moncada PS

    更新日期:2015-08-01 00:00:00

  • Reductive stress impairs myogenic differentiation.

    abstract::Myo-satellite cells regenerate and differentiate into skeletal muscle (SM) after acute or chronic injury. Changes in the redox milieu towards the oxidative arm at the wound site are known to compromise SM regeneration. Recently, we reported that abrogation of Nrf2/antioxidant signaling promotes oxidative stress and im...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101492

    authors: Rajasekaran NS,Shelar SB,Jones DP,Hoidal JR

    更新日期:2020-07-01 00:00:00

  • Hydrogen sulfide stimulates xanthine oxidoreductase conversion to nitrite reductase and formation of NO.

    abstract::Cardiovascular disease is the leading cause of death and disability worldwide with increased oxidative stress and reduced NO bioavailability serving as key risk factors. For decades, elevation in protein abundance and enzymatic activity of xanthine oxidoreductase (XOR) under hypoxic/inflammatory conditions has been as...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101447

    authors: Pardue S,Kolluru GK,Shen X,Lewis SE,Saffle CB,Kelley EE,Kevil CG

    更新日期:2020-07-01 00:00:00

  • Redox control of yeast Sir2 activity is involved in acetic acid resistance and longevity.

    abstract::Yeast Sir2 is an NAD-dependent histone deacetylase related to oxidative stress and aging. In a previous study, we showed that Sir2 is regulated by S-glutathionylation of key cysteine residues located at the catalytic domain. Mutation of these residues results in strains with increased resistance to disulfide stress. I...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101229

    authors: Vall-Llaura N,Mir N,Garrido L,Vived C,Cabiscol E

    更新日期:2019-06-01 00:00:00

  • Sexual hormones regulate the redox status and mitochondrial function in the brain. Pathological implications.

    abstract::Compared to other organs, the brain is especially exposed to oxidative stress. In general, brains from young females tend to present lower oxidative damage in comparison to their male counterparts. This has been attributed to higher antioxidant defenses and a better mitochondrial function in females, which has been li...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2020.101505

    authors: Torrens-Mas M,Pons DG,Sastre-Serra J,Oliver J,Roca P

    更新日期:2020-04-01 00:00:00

  • Redox-fibrosis: Impact of TGFβ1 on ROS generators, mediators and functional consequences.

    abstract::Fibrosis is one of the most prevalent features of age-related diseases like obesity, diabetes, non-alcoholic fatty liver disease, chronic kidney disease, or cardiomyopathy and affects millions of people in all countries. Although the understanding about the pathophysiology of fibrosis has improved a lot during the rec...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2015.08.015

    authors: Richter K,Konzack A,Pihlajaniemi T,Heljasvaara R,Kietzmann T

    更新日期:2015-12-01 00:00:00

  • Differential endothelial signaling responses elicited by chemogenetic H2O2 synthesis.

    abstract::Hydrogen peroxide (H2O2) modulates critical phosphorylation pathways in vascular endothelial cells, many of which affect endothelial nitric oxide synthase (eNOS) signal transduction. Both intracellular and extracellular sources of H2O2 have been implicated in eNOS regulation, yet the specific endothelial pathways rema...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101605

    authors: Saeedi Saravi SS,Eroglu E,Waldeck-Weiermair M,Sorrentino A,Steinhorn B,Belousov V,Michel T

    更新日期:2020-09-01 00:00:00

  • AVE 0991 attenuates oxidative stress and neuronal apoptosis via Mas/PKA/CREB/UCP-2 pathway after subarachnoid hemorrhage in rats.

    abstract::Oxidative stress and neuronal apoptosis have been demonstrated to be key features in early brain injury (EBI) after subarachnoid hemorrhage (SAH). Previous studies have indicated that Mas receptor activation initiates an anti-oxidative and anti-apoptotic role in the brain. However, whether Mas activation can attenuate...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.09.022

    authors: Mo J,Enkhjargal B,Travis ZD,Zhou K,Wu P,Zhang G,Zhu Q,Zhang T,Peng J,Xu W,Ocak U,Chen Y,Tang J,Zhang J,Zhang JH

    更新日期:2019-01-01 00:00:00

  • Over-expression of a cardiac-specific human dopamine D5 receptor mutation in mice causes a dilated cardiomyopathy through ROS over-generation by NADPH oxidase activation and Nrf2 degradation.

    abstract::Dilated cardiomyopathy (DCM) is a severe disorder caused by medications or genetic mutations. D5 dopamine receptor (D5R) gene knockout (D5-/-) mice have cardiac hypertrophy and high blood pressure. To investigate the role and mechanism by which the D5R regulates cardiac function, we generated cardiac-specific human D5...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.07.008

    authors: Jiang X,Liu Y,Liu X,Wang W,Wang Z,Hu Y,Zhang Y,Zhang Y,Jose PA,Wei Q,Yang Z

    更新日期:2018-10-01 00:00:00

  • Clinical relevance of guanine-derived urinary biomarkers of oxidative stress, determined by LC-MS/MS.

    abstract::A reliable and fast liquid chromatography-tandem mass spectrometry method has been developed for the simultaneous determination of three oxidized nucleic acid damage products in urine, 8-oxoguanine (8-oxoGua), 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) and 8-oxo-7,8-dihydroguanosine (8-oxoGuo). We applied this me...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.11.016

    authors: Shih YM,Cooke MS,Pan CH,Chao MR,Hu CW

    更新日期:2019-01-01 00:00:00

  • NRF2 and NF-қB interplay in cerebrovascular and neurodegenerative disorders: Molecular mechanisms and possible therapeutic approaches.

    abstract::Electrophiles and reactive oxygen species (ROS) play a major role in modulating cellular defense mechanisms as well as physiological functions, and intracellular signaling. However, excessive ROS generation (endogenous and exogenous) can create a state of redox imbalance leading to cellular and tissue damage (Ma and H...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2018.11.017

    authors: Sivandzade F,Prasad S,Bhalerao A,Cucullo L

    更新日期:2019-02-01 00:00:00

  • Persistent oxidative stress in human neural stem cells exposed to low fluences of charged particles.

    abstract::Exposure to the space radiation environment poses risks for a range of deleterious health effects due to the unique types of radiation encountered. Galactic cosmic rays are comprised of a spectrum of highly energetic nuclei that deposit densely ionizing tracks of damage along the particle trajectory. These tracks are ...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2015.03.001

    authors: Baulch JE,Craver BM,Tran KK,Yu L,Chmielewski N,Allen BD,Limoli CL

    更新日期:2015-08-01 00:00:00

  • Glutaredoxin-2 controls cardiac mitochondrial dynamics and energetics in mice, and protects against human cardiac pathologies.

    abstract::Glutaredoxin 2 (GRX2), a mitochondrial glutathione-dependent oxidoreductase, is central to glutathione homeostasis and mitochondrial redox, which is crucial in highly metabolic tissues like the heart. Previous research showed that absence of Grx2, leads to impaired mitochondrial complex I function, hypertension and ca...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.10.019

    authors: Kanaan GN,Ichim B,Gharibeh L,Maharsy W,Patten DA,Xuan JY,Reunov A,Marshall P,Veinot J,Menzies K,Nemer M,Harper ME

    更新日期:2018-04-01 00:00:00

  • Renoprotective effect of the antioxidant curcumin: Recent findings.

    abstract::For years, there have been studies based on the use of natural compounds plant-derived as potential therapeutic agents for various diseases in humans. Curcumin is a phenolic compound extracted from Curcuma longa rhizome commonly used in Asia as a spice, pigment and additive. In traditional medicine of India and China,...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2013.09.003

    authors: Trujillo J,Chirino YI,Molina-Jijón E,Andérica-Romero AC,Tapia E,Pedraza-Chaverrí J

    更新日期:2013-09-17 00:00:00

  • Activation of the mechanosensitive Ca2+ channel TRPV4 induces endothelial barrier permeability via the disruption of mitochondrial bioenergetics.

    abstract::Mechanical ventilation is a life-saving intervention in critically ill patients with respiratory failure due to acute respiratory distress syndrome (ARDS), a refractory lung disease with an unacceptable high mortality rate. Paradoxically, mechanical ventilation also creates excessive mechanical stress that directly au...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101785

    authors: Lu Q,Zemskov EA,Sun X,Wang H,Yegambaram M,Wu X,Garcia-Flores A,Song S,Tang H,Kangath A,Cabanillas GZ,Yuan JX,Wang T,Fineman JR,Black SM

    更新日期:2021-01-01 00:00:00

  • Mst1 deletion attenuates renal ischaemia-reperfusion injury: The role of microtubule cytoskeleton dynamics, mitochondrial fission and the GSK3β-p53 signalling pathway.

    abstract::Despite extensive research that has been carried out over the past three decades in the field of renal ischaemia-reperfusion (I/R) injury, the pathogenic role of mitochondrial fission in renal I/R injury is poorly understood. The aim of our study is to investigate the molecular mechanism by which mammalian STE20-like ...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.10.012

    authors: Li H,Feng J,Zhang Y,Feng J,Wang Q,Zhao S,Meng P,Li J

    更新日期:2019-01-01 00:00:00

  • Triggering apoptosis by oroxylin A through caspase-8 activation and p62/SQSTM1 proteolysis.

    abstract::Emerging evidence suggests that oroxylin A exhibits antitumor effects by inducing cell apoptosis. However, the involved molecular mechanisms have not been elucidated. Here we report that the apoptosis induced by oroxylin A was dependent on p62-mediated activation of caspase-8 in hepatocellular carcinoma cells. Further...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101392

    authors: Zhao Y,Zhu Q,Bu X,Zhou Y,Bai D,Guo Q,Gao Y,Lu N

    更新日期:2020-01-01 00:00:00

  • Redox regulation of ischemic limb neovascularization - What we have learned from animal studies.

    abstract::Mouse hindlimb ischemia has been widely used as a model to study peripheral artery disease. Genetic modulation of the enzymatic source of oxidants or components of the antioxidant system reveal that physiological levels of oxidants are essential to promote the process of arteriogenesis and angiogenesis after femoral a...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2017.04.040

    authors: Matsui R,Watanabe Y,Murdoch CE

    更新日期:2017-08-01 00:00:00

  • Impact of glutathione supplementation of parenteral nutrition on hepatic methionine adenosyltransferase activity.

    abstract:BACKGROUND:The oxidation of the methionine adenosyltransferase (MAT) by the combined impact of peroxides contaminating parenteral nutrition (PN) and oxidized redox potential of glutathione is suspected to explain its inhibition observed in animals. A modification of MAT activity is suspected to be at origin of the PN-a...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2015.12.003

    authors: Elremaly W,Mohamed I,Rouleau T,Lavoie JC

    更新日期:2016-08-01 00:00:00

  • The impact of partial hepatectomy on oxidative state in the liver remnant - An in vivo swine model.

    abstract:BACKGROUND:Previous studies on oxidative state after partial hepatectomy (PHx) report conflicting data on levels of glutathione (GSH) and are mainly presented in rodent models by methodology less sensitive than the present technologies. The current swine model presents GSH levels and the following genetic response post...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2016.05.005

    authors: Florholmen-Kjær Å,Goll R,Fuskevåg OM,Nygård IE,Paulssen RH,Revhaug A,Mortensen KE

    更新日期:2016-10-01 00:00:00

  • Total sulfane sulfur bioavailability reflects ethnic and gender disparities in cardiovascular disease.

    abstract::Hydrogen sulfide (H2S) has emerged as an important physiological and pathophysiological signaling molecule in the cardiovascular system influencing vascular tone, cytoprotective responses, redox reactions, vascular adaptation, and mitochondrial respiration. However, bioavailable levels of H2S in its various biochemica...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.01.007

    authors: Rajpal S,Katikaneni P,Deshotels M,Pardue S,Glawe J,Shen X,Akkus N,Modi K,Bhandari R,Dominic P,Reddy P,Kolluru GK,Kevil CG

    更新日期:2018-05-01 00:00:00

  • Exercise, redox homeostasis and the epigenetic landscape.

    abstract::Physical exercise represents one of the strongest physiological stimuli capable to induce functional and structural modifications in all biological systems. Indeed, beside the traditional genetic mechanisms, physical exercise can modulate gene expression through epigenetic modifications, namely DNA methylation, post-t...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2020.101477

    authors: Dimauro I,Paronetto MP,Caporossi D

    更新日期:2020-08-01 00:00:00

  • Lung epithelial protein disulfide isomerase A3 (PDIA3) plays an important role in influenza infection, inflammation, and airway mechanics.

    abstract::Protein disulfide isomerases (PDI) are a family of redox chaperones that catalyze formation or isomerization of disulfide bonds in proteins. Previous studies have shown that one member, PDIA3, interacts with influenza A virus (IAV) hemagglutinin (HA), and this interaction is required for efficient oxidative folding of...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101129

    authors: Chamberlain N,Korwin-Mihavics BR,Nakada EM,Bruno SR,Heppner DE,Chapman DG,Hoffman SM,van der Vliet A,Suratt BT,Dienz O,Alcorn JF,Anathy V

    更新日期:2019-04-01 00:00:00

  • DNA hypermethylation: A novel mechanism of CREG gene suppression and atherosclerogenic endothelial dysfunction.

    abstract:OBJECTIVE:Cellular repressor of E1A-stimulated genes (CREG), a vasculoprotective molecule, is significantly downregulated in atherosclerotic vessels through unclear mechanisms. While epigenetic regulation is involved in atherosclerosis development, it is not known if the CREG gene is epigenetically regulated. The aim o...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101444

    authors: Liu Y,Tian X,Liu S,Liu D,Li Y,Liu M,Zhang X,Yan C,Han Y

    更新日期:2020-05-01 00:00:00

  • Intramuscular mechanisms of overtraining.

    abstract::Strenuous exercise is a potent stimulus to induce beneficial skeletal muscle adaptations, ranging from increased endurance due to mitochondrial biogenesis and angiogenesis, to increased strength from hypertrophy. While exercise is necessary to trigger and stimulate muscle adaptations, the post-exercise recovery period...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2020.101480

    authors: Cheng AJ,Jude B,Lanner JT

    更新日期:2020-08-01 00:00:00

  • Inhibition of autophagy with bafilomycin and chloroquine decreases mitochondrial quality and bioenergetic function in primary neurons.

    abstract::Autophagy is an important cell recycling program responsible for the clearance of damaged or long-lived proteins and organelles. Pharmacological modulators of this pathway have been extensively utilized in a wide range of basic research and pre-clinical studies. Bafilomycin A1 and chloroquine are commonly used compoun...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2016.11.004

    authors: Redmann M,Benavides GA,Berryhill TF,Wani WY,Ouyang X,Johnson MS,Ravi S,Barnes S,Darley-Usmar VM,Zhang J

    更新日期:2017-04-01 00:00:00