Over-expression of a cardiac-specific human dopamine D5 receptor mutation in mice causes a dilated cardiomyopathy through ROS over-generation by NADPH oxidase activation and Nrf2 degradation.

Abstract:

:Dilated cardiomyopathy (DCM) is a severe disorder caused by medications or genetic mutations. D5 dopamine receptor (D5R) gene knockout (D5-/-) mice have cardiac hypertrophy and high blood pressure. To investigate the role and mechanism by which the D5R regulates cardiac function, we generated cardiac-specific human D5R F173L(hD5F173L-TG) and cardiac-specific human D5R wild-type (hD5WT-TG) transgenic mice, and H9c2 cells stably expressing hD5F173L and hD5WT. We found that cardiac-specific hD5F173L-TG mice, relative to hD5WT-TG mice, presented with DCM and increased cardiac expression of cardiac injury markers, NADPH oxidase activity, Nrf2 degradation, and activated ERK1/2/JNK pathway. H9c2-hD5F173L cells also had an increase in NADPH oxidase activity, Nrf2 degradation, and phospho-JNK (p-JNK) expression. A Nrf2 inhibitor also increased p-JNK expression in H9c2-hD5F173L cells but not in H9c2-hD5WT cells. We suggest that the D5R may play an important role in the preservation of normal heart function by inhibiting the production of reactive oxygen species, via inhibition of NADPH oxidase, Nrf2 degradation, and ERK1/2/JNK pathways.

journal_name

Redox Biol

journal_title

Redox biology

authors

Jiang X,Liu Y,Liu X,Wang W,Wang Z,Hu Y,Zhang Y,Zhang Y,Jose PA,Wei Q,Yang Z

doi

10.1016/j.redox.2018.07.008

subject

Has Abstract

pub_date

2018-10-01 00:00:00

pages

134-146

issn

2213-2317

pii

S2213-2317(18)30554-8

journal_volume

19

pub_type

杂志文章
  • Keap1 controls protein S-nitrosation and apoptosis-senescence switch in endothelial cells.

    abstract::Premature senescence, a death escaping pathway for cells experiencing stress, is conducive to aging and cardiovascular diseases. The molecular switch between senescent and apoptotic fate remains, however, poorly recognized. Nrf2 is an important transcription factor orchestrating adaptive response to cellular stress. H...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101304

    authors: Kopacz A,Klóska D,Proniewski B,Cysewski D,Personnic N,Piechota-Polańczyk A,Kaczara P,Zakrzewska A,Forman HJ,Dulak J,Józkowicz A,Grochot-Przęczek A

    更新日期:2020-01-01 00:00:00

  • Maintenance of mitochondrial genomic integrity in the absence of manganese superoxide dismutase in mouse liver hepatocytes.

    abstract::Manganese superoxide dismutase, encoded by the Sod2 gene, is a ubiquitously expressed mitochondrial antioxidant enzyme that is essential for mammalian life. Mice born with constitutive genetic knockout of Sod2 do not survive the neonatal stage, which renders the longitudinal study of the biochemical and metabolic effe...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2013.01.001

    authors: Cyr AR,Brown KE,McCormick ML,Coleman MC,Case AJ,Watts GS,Futscher BW,Spitz DR,Domann FE

    更新日期:2013-02-05 00:00:00

  • Redox regulation of ischemic limb neovascularization - What we have learned from animal studies.

    abstract::Mouse hindlimb ischemia has been widely used as a model to study peripheral artery disease. Genetic modulation of the enzymatic source of oxidants or components of the antioxidant system reveal that physiological levels of oxidants are essential to promote the process of arteriogenesis and angiogenesis after femoral a...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2017.04.040

    authors: Matsui R,Watanabe Y,Murdoch CE

    更新日期:2017-08-01 00:00:00

  • Redox regulation of genome stability by effects on gene expression, epigenetic pathways and DNA damage/repair.

    abstract::Reactive oxygen and nitrogen species (e.g. H2O2, nitric oxide) confer redox regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. In addition, classical regulation of gene expression or activity, including gene transcription to RNA followed by transla...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2015.05.008

    authors: Mikhed Y,Görlach A,Knaus UG,Daiber A

    更新日期:2015-08-01 00:00:00

  • Exercise, redox homeostasis and the epigenetic landscape.

    abstract::Physical exercise represents one of the strongest physiological stimuli capable to induce functional and structural modifications in all biological systems. Indeed, beside the traditional genetic mechanisms, physical exercise can modulate gene expression through epigenetic modifications, namely DNA methylation, post-t...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2020.101477

    authors: Dimauro I,Paronetto MP,Caporossi D

    更新日期:2020-08-01 00:00:00

  • Inhibition of autophagy with bafilomycin and chloroquine decreases mitochondrial quality and bioenergetic function in primary neurons.

    abstract::Autophagy is an important cell recycling program responsible for the clearance of damaged or long-lived proteins and organelles. Pharmacological modulators of this pathway have been extensively utilized in a wide range of basic research and pre-clinical studies. Bafilomycin A1 and chloroquine are commonly used compoun...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2016.11.004

    authors: Redmann M,Benavides GA,Berryhill TF,Wani WY,Ouyang X,Johnson MS,Ravi S,Barnes S,Darley-Usmar VM,Zhang J

    更新日期:2017-04-01 00:00:00

  • Glutaredoxin-2 controls cardiac mitochondrial dynamics and energetics in mice, and protects against human cardiac pathologies.

    abstract::Glutaredoxin 2 (GRX2), a mitochondrial glutathione-dependent oxidoreductase, is central to glutathione homeostasis and mitochondrial redox, which is crucial in highly metabolic tissues like the heart. Previous research showed that absence of Grx2, leads to impaired mitochondrial complex I function, hypertension and ca...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.10.019

    authors: Kanaan GN,Ichim B,Gharibeh L,Maharsy W,Patten DA,Xuan JY,Reunov A,Marshall P,Veinot J,Menzies K,Nemer M,Harper ME

    更新日期:2018-04-01 00:00:00

  • Estradiol improves cardiovascular function through up-regulation of SOD2 on vascular wall.

    abstract::Epidemiological studies have shown that estrogens have protective effects in cardiovascular diseases, even though the results from human clinical trials remain controversial, while most of the animal experiments confirmed this effect, but the detailed mechanism remains unclear. In this study, we found that estradiol (...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2014.11.001

    authors: Liu Z,Gou Y,Zhang H,Zuo H,Zhang H,Liu Z,Yao D

    更新日期:2014-01-01 00:00:00

  • Nitric Oxide And Oxygen: Actions And Interactions In Health And Disease.

    abstract::Nitric oxide (NO) inhibits cell respiration reversibly and in competition with O2 through the inhibition of the mitochondrial cytochrome c oxidase (Complex IV). At concentrations lower than those required to inhibit respiration, endogenous NO enhances the reduction of the electron transport chain, thus enabling cells ...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2015.09.034

    authors: Moncada PS

    更新日期:2015-08-01 00:00:00

  • Sexual hormones regulate the redox status and mitochondrial function in the brain. Pathological implications.

    abstract::Compared to other organs, the brain is especially exposed to oxidative stress. In general, brains from young females tend to present lower oxidative damage in comparison to their male counterparts. This has been attributed to higher antioxidant defenses and a better mitochondrial function in females, which has been li...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2020.101505

    authors: Torrens-Mas M,Pons DG,Sastre-Serra J,Oliver J,Roca P

    更新日期:2020-04-01 00:00:00

  • Renoprotective effect of the antioxidant curcumin: Recent findings.

    abstract::For years, there have been studies based on the use of natural compounds plant-derived as potential therapeutic agents for various diseases in humans. Curcumin is a phenolic compound extracted from Curcuma longa rhizome commonly used in Asia as a spice, pigment and additive. In traditional medicine of India and China,...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2013.09.003

    authors: Trujillo J,Chirino YI,Molina-Jijón E,Andérica-Romero AC,Tapia E,Pedraza-Chaverrí J

    更新日期:2013-09-17 00:00:00

  • Effects of the isoflavone prunetin on gut health and stress response in male Drosophila melanogaster.

    abstract::The traditional Asian diet is rich in fruits, vegetables and soy, the latter representing a significant source of dietary isoflavones. The isoflavone prunetin was recently identified to improve intestinal epithelial barrier function in vitro and to ameliorate general survival and overall health state in vivo in male D...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2016.01.001

    authors: Piegholdt S,Rimbach G,Wagner AE

    更新日期:2016-08-01 00:00:00

  • A novel role for NUPR1 in the keratinocyte stress response to UV oxidized phospholipids.

    abstract::Ultraviolet light is the dominant environmental oxidative skin stressor and a major skin aging factor. We studied which oxidized phospholipid (OxPL) mediators would be generated in primary human keratinocytes (KC) upon exposure to ultraviolet A light (UVA) and investigated the contribution of OxPL to UVA responses. Ma...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.11.006

    authors: Narzt MS,Nagelreiter IM,Oskolkova O,Bochkov VN,Latreille J,Fedorova M,Ni Z,Sialana FJ,Lubec G,Filzwieser M,Laggner M,Bilban M,Mildner M,Tschachler E,Grillari J,Gruber F

    更新日期:2019-01-01 00:00:00

  • The role of oxidative stress in cardiovascular disease caused by social isolation and loneliness.

    abstract::Loneliness and social isolation are common sources of chronic stress in modern society. Epidemiological studies have demonstrated that loneliness and social isolation increase mortality risk as much as smoking or alcohol consumption and more than physical inactivity or obesity. Loneliness in human is associated with h...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2020.101585

    authors: Li H,Xia N

    更新日期:2020-10-01 00:00:00

  • Mitochondrial oxidative stress in the retinal pigment epithelium (RPE) led to metabolic dysfunction in both the RPE and retinal photoreceptors.

    abstract::Age-related macular degeneration (AMD) is the leading cause of vision loss in the western world. Recent evidence suggests that RPE and photoreceptors have an interconnected metabolism and that mitochondrial damage in RPE is a trigger for degeneration in both RPE and photoreceptors in AMD. To test this hypothesis, this...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101201

    authors: Brown EE,DeWeerd AJ,Ildefonso CJ,Lewin AS,Ash JD

    更新日期:2019-06-01 00:00:00

  • Activation leads to a significant shift in the intracellular redox homeostasis of neutrophil-like cells.

    abstract::Neutrophils produce a cocktail of oxidative species during the so-called oxidative burst to attack phagocytized bacteria. However, little is known about the neutrophils' redox homeostasis during the oxidative burst and there is currently no consensus about the interplay between oxidative species and cellular signaling...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101344

    authors: Xie K,Varatnitskaya M,Maghnouj A,Bader V,Winklhofer KF,Hahn S,Leichert LI

    更新日期:2020-01-01 00:00:00

  • Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy.

    abstract::In order to overcome intercellular variability and thereby effectively assess signal propagation in biological networks it is imperative to simultaneously quantify multiple biological observables in single living cells. While fluorescent biosensors have been the tool of choice to monitor the dynamics of protein intera...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.07.023

    authors: Corbat AA,Schuermann KC,Liguzinski P,Radon Y,Bastiaens PIH,Verveer PJ,Grecco HE

    更新日期:2018-10-01 00:00:00

  • Curcumin blunts epithelial-mesenchymal transition of hepatocytes to alleviate hepatic fibrosis through regulating oxidative stress and autophagy.

    abstract::The massive production and activation of myofibroblasts (MFB) is key to the development of liver fibrosis. In many studies, it has been proven that hepatocytes are an important part of MFB, and can be transformed into MFB through epithelial-mesenchymal transition (EMT) during hepatic fibrogenesis. In our previous stud...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101600

    authors: Kong D,Zhang Z,Chen L,Huang W,Zhang F,Wang L,Wang Y,Cao P,Zheng S

    更新日期:2020-09-01 00:00:00

  • Hydrogen sulfide stimulates xanthine oxidoreductase conversion to nitrite reductase and formation of NO.

    abstract::Cardiovascular disease is the leading cause of death and disability worldwide with increased oxidative stress and reduced NO bioavailability serving as key risk factors. For decades, elevation in protein abundance and enzymatic activity of xanthine oxidoreductase (XOR) under hypoxic/inflammatory conditions has been as...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101447

    authors: Pardue S,Kolluru GK,Shen X,Lewis SE,Saffle CB,Kelley EE,Kevil CG

    更新日期:2020-07-01 00:00:00

  • Quantifying intracellular hydrogen peroxide perturbations in terms of concentration.

    abstract::Molecular level, mechanistic understanding of the roles of reactive oxygen species (ROS) in a variety of pathological conditions is hindered by the difficulties associated with determining the concentration of various ROS species. Here, we present an approach that converts fold-change in the signal from an intracellul...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2014.08.001

    authors: Huang BK,Sikes HD

    更新日期:2014-01-01 00:00:00

  • S-Nitrosoglutathione-mediated STAT3 regulation in efficacy of radiotherapy and cisplatin therapy in head and neck squamous cell carcinoma.

    abstract::S-nitrosoglutathione (GSNO) is an endogenous nitric oxide (NO) carrier that plays a critical role in redox based NO signaling. Recent studies have reported that GSNO regulates the activities of STAT3 and NF-κB via S-nitrosylation dependent mechanisms. Since STAT3 and NF-κB are key transcription factors involved in tum...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2015.07.001

    authors: Kaliyaperumal K,Sharma AK,McDonald DG,Dhindsa JS,Yount C,Singh AK,Won JS,Singh I

    更新日期:2015-12-01 00:00:00

  • Mitochondrial stress signaling in longevity: a new role for mitochondrial function in aging.

    abstract::Mitochondria are principal regulators of cellular function and metabolism through production of ATP for energy homeostasis, maintenance of calcium homeostasis, regulation of apoptosis and fatty acid oxidation to provide acetyl CoA for fueling the electron transport chain. In addition, mitochondria play a key role in c...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2014.07.005

    authors: Hill S,Van Remmen H

    更新日期:2014-07-27 00:00:00

  • A distinct class of antioxidant response elements is consistently activated in tumors with NRF2 mutations.

    abstract::NRF2 is a redox-responsive transcription factor that regulates expression of cytoprotective genes via its interaction with DNA sequences known as antioxidant response elements (AREs). NRF2 activity is induced by oxidative stress, but oxidative stress is not the only context in which NRF2 can be activated. Mutations th...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.07.026

    authors: Levings DC,Wang X,Kohlhase D,Bell DA,Slattery M

    更新日期:2018-10-01 00:00:00

  • Epigenetic reprogramming of epithelial-mesenchymal transition promotes ferroptosis of head and neck cancer.

    abstract::Ferroptosis is a newly defined form of cell death induced by iron-dependent accumulation of lethal lipid peroxidation. Ferroptosis represent a therapeutic strategy to suppress therapy-resistant cancer cells with more property of epithelial-mesenchymal transition (EMT). However, epigenetic reprogramming of EMT has been...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101697

    authors: Lee J,You JH,Kim MS,Roh JL

    更新日期:2020-10-01 00:00:00

  • Human aquaporin-11 guarantees efficient transport of H2O2 across the endoplasmic reticulum membrane.

    abstract::Hydrogen peroxide (H2O2) is an essential second intracellular messenger. To reach its targets in the cytosol, H2O2 must cross a membrane, a feat that requires aquaporins (AQP) endowed with 'peroxiporin' activity (AQP3, AQP8, AQP9). Here, we exploit different organelle-targeted H2O2-sensitive probes to show that also A...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101326

    authors: Bestetti S,Galli M,Sorrentino I,Pinton P,Rimessi A,Sitia R,Medraño-Fernandez I

    更新日期:2020-01-01 00:00:00

  • Classifying oxidative stress by F2-isoprostane levels across human diseases: A meta-analysis.

    abstract::The notion that oxidative stress plays a role in virtually every human disease and environmental exposure has become ingrained in everyday knowledge. However, mounting evidence regarding the lack of specificity of biomarkers traditionally used as indicators of oxidative stress in human disease and exposures now necess...

    journal_title:Redox biology

    pub_type: 杂志文章,meta分析

    doi:10.1016/j.redox.2017.03.024

    authors: van 't Erve TJ,Kadiiska MB,London SJ,Mason RP

    更新日期:2017-08-01 00:00:00

  • Biochemical And Tumorigenic Effects Of Redox Modification Of Ras-G12c By Nitric Oxide.

    abstract:BACKGROUND:The Ras family of small GTPases cycle between an inactive, GDP-bound state and an active, GTP-bound state. When bound to GTP, Ras engages and activates a number of effectors that mediate proliferative and survival signals. Ras is mutated in over 30% of human cancers, usually at codons 12, 13, or 61, to remai...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2015.09.015

    authors: Crowe M

    更新日期:2015-08-01 00:00:00

  • Differential endothelial signaling responses elicited by chemogenetic H2O2 synthesis.

    abstract::Hydrogen peroxide (H2O2) modulates critical phosphorylation pathways in vascular endothelial cells, many of which affect endothelial nitric oxide synthase (eNOS) signal transduction. Both intracellular and extracellular sources of H2O2 have been implicated in eNOS regulation, yet the specific endothelial pathways rema...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101605

    authors: Saeedi Saravi SS,Eroglu E,Waldeck-Weiermair M,Sorrentino A,Steinhorn B,Belousov V,Michel T

    更新日期:2020-09-01 00:00:00

  • Synergistic antitumor activity of rapamycin and EF24 via increasing ROS for the treatment of gastric cancer.

    abstract::Mechanistic/mammalian target of rapamycin (mTOR) has emerged as a new potential therapeutic target for gastric cancer. Rapamycin and rapamycin analogs are undergoing clinical trials and have produced clinical responses in a subgroup of cancer patients. However, monotherapy with rapamycin at safe dosage fails to induce...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2016.09.006

    authors: Chen W,Zou P,Zhao Z,Chen X,Fan X,Vinothkumar R,Cui R,Wu F,Zhang Q,Liang G,Ji J

    更新日期:2016-12-01 00:00:00

  • Selective cytotoxicity of the herbal substance acteoside against tumor cells and its mechanistic insights.

    abstract::Natural products are characterized by extreme structural diversity and thus they offer a unique source for the identification of novel anti-tumor agents. Herein, we report that the herbal substance acteoside being isolated by advanced phytochemical methods from Lippia citriodora leaves showed enhanced cytotoxicity aga...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.02.015

    authors: Cheimonidi C,Samara P,Polychronopoulos P,Tsakiri EN,Nikou T,Myrianthopoulos V,Sakellaropoulos T,Zoumpourlis V,Mikros E,Papassideri I,Argyropoulou A,Halabalaki M,Alexopoulos LG,Skaltsounis AL,Tsitsilonis OE,Aligiannis NN,T

    更新日期:2018-06-01 00:00:00