Nitric Oxide And Oxygen: Actions And Interactions In Health And Disease.

Abstract:

:Nitric oxide (NO) inhibits cell respiration reversibly and in competition with O2 through the inhibition of the mitochondrial cytochrome c oxidase (Complex IV). At concentrations lower than those required to inhibit respiration, endogenous NO enhances the reduction of the electron transport chain, thus enabling cells to maintain their O2 consumption. This however facilitates the release of superoxide anion, which initiates the transcriptional activation of NF-kB as an early signal of a stress response. Through free radical formation, long-term inhibition of mitochondrial respiration by NO leads to persistent inhibition of Complex I. This is dependent on the S-nitrosylation of a specific thiol in the active form of this protein. S-nitrosylation of Complex I might indicate the early stages of a pathological process. Inhibition of mitochondrial respiration by low concentrations of NO at critical O2 concentrations also leads to prevention of the stabilization of hypoxia-inducible factor-1α (HIF-1α) due to the redistribution of O2 towards non-respiratory O2-dependent targets. This prevents the cell from registering a state of hypoxia at low O2 concentrations. On the other hand, at higher concentrations such as those generated in certain forms of cancer, NO increases the expression of HIF-1α by an action most probably involving a free radical mechanism. It is likely that the interactions between oxygen and NO, either at the mitochondria or in the cell in general, play a role in the initiation and development of neoplastic transformation and spreading. The ways in which these interactions operate remain unclear and are likely to vary from cancer to cancer.

journal_name

Redox Biol

journal_title

Redox biology

authors

Moncada PS

doi

10.1016/j.redox.2015.09.034

subject

Has Abstract

pub_date

2015-08-01 00:00:00

pages

421

issn

2213-2317

pii

S2213-2317(15)00145-7

journal_volume

5

pub_type

杂志文章
  • Formation of electrophilic oxidation products from mitochondrial cardiolipin in vitro and in vivo in the context of apoptosis and atherosclerosis.

    abstract::Emerging evidence indicates that mitochondrial cardiolipins (CL) are prone to free radical oxidation and this process appears to be intimately associated with multiple biological functions of mitochondria. Our previous work demonstrated that a significant amount of potent lipid electrophiles including 4-hydroxy-nonena...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2014.04.003

    authors: Zhong H,Lu J,Xia L,Zhu M,Yin H

    更新日期:2014-04-13 00:00:00

  • Oxidative stress-induced premature senescence dysregulates VEGF and CFH expression in retinal pigment epithelial cells: Implications for Age-related Macular Degeneration.

    abstract::Oxidative stress has a critical role in the pathogenesis of Age-related Macular Degeneration (AMD), a multifactorial disease that includes age, gene variants of complement regulatory proteins and smoking as the main risk factors. Stress-induced premature cellular senescence (SIPS) is postulated to contribute to this c...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2015.11.011

    authors: Marazita MC,Dugour A,Marquioni-Ramella MD,Figueroa JM,Suburo AM

    更新日期:2016-04-01 00:00:00

  • Intramuscular mechanisms of overtraining.

    abstract::Strenuous exercise is a potent stimulus to induce beneficial skeletal muscle adaptations, ranging from increased endurance due to mitochondrial biogenesis and angiogenesis, to increased strength from hypertrophy. While exercise is necessary to trigger and stimulate muscle adaptations, the post-exercise recovery period...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2020.101480

    authors: Cheng AJ,Jude B,Lanner JT

    更新日期:2020-08-01 00:00:00

  • Genome-wide transcriptional effects of deletions of sulphur metabolism genes in Drosophila melanogaster.

    abstract::In recent years, the gasotransmitter hydrogen sulphide (H2S), produced by the transsulphuration pathway, has been recognized as a biological mediator playing an important role under normal conditions and in various pathologies in both eukaryotes and prokaryotes. The transsulphuration pathway (TSP) includes the convers...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101654

    authors: Zatsepina O,Karpov D,Chuvakova L,Rezvykh A,Funikov S,Sorokina S,Zakluta A,Garbuz D,Shilova V,Evgen'ev M

    更新日期:2020-09-01 00:00:00

  • Redox mechanisms in age-related lung fibrosis.

    abstract::Redox signaling and oxidative stress are associated with tissue fibrosis and aging. Aging is recognized as a major risk factor for fibrotic diseases involving multiple organ systems, including that of the lung. A number of oxidant generating enzymes are upregulated while antioxidant defenses are deficient with aging a...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2016.06.005

    authors: Kurundkar A,Thannickal VJ

    更新日期:2016-10-01 00:00:00

  • Endothelial nitric oxide synthase in red blood cells: key to a new erythrocrine function?

    abstract::Red blood cells (RBC) have been considered almost exclusively as a transporter of metabolic gases and nutrients for the tissues. It is an accepted dogma that RBCs take up and inactivate endothelium-derived NO via rapid reaction with oxyhemoglobin to form methemoglobin and nitrate, thereby limiting NO available for vas...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2013.12.027

    authors: Cortese-Krott MM,Kelm M

    更新日期:2014-01-09 00:00:00

  • Mitochondrial oxidative stress in the retinal pigment epithelium (RPE) led to metabolic dysfunction in both the RPE and retinal photoreceptors.

    abstract::Age-related macular degeneration (AMD) is the leading cause of vision loss in the western world. Recent evidence suggests that RPE and photoreceptors have an interconnected metabolism and that mitochondrial damage in RPE is a trigger for degeneration in both RPE and photoreceptors in AMD. To test this hypothesis, this...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101201

    authors: Brown EE,DeWeerd AJ,Ildefonso CJ,Lewin AS,Ash JD

    更新日期:2019-06-01 00:00:00

  • Electrophiles modulate glutathione reductase activity via alkylation and upregulation of glutathione biosynthesis.

    abstract::Cells evolved robust homeostatic mechanisms to protect against oxidation or alkylation by electrophilic species. Glutathione (GSH) is the most abundant intracellular thiol, protects cellular components from oxidation and is maintained in a reduced state by glutathione reductase (GR). Nitro oleic acid (NO2-OA) is an el...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.11.008

    authors: Jobbagy S,Vitturi DA,Salvatore SR,Turell L,Pires MF,Kansanen E,Batthyany C,Lancaster JR Jr,Freeman BA,Schopfer FJ

    更新日期:2019-02-01 00:00:00

  • Simvastatin and oxidative stress in humans: A randomized, double-blinded, placebo-controlled clinical trial.

    abstract::Simvastatin reduces the blood concentration of cholesterol by inhibiting hydroxymethylglutaryl-coenzyme A reductase, the rate-limiting enzyme in cholesterol synthesis, and thereby reduces the risk of cardiovascular disease. In addition, simvastatin treatment leads to a reduction in fluxes in mitochondrial respiratory ...

    journal_title:Redox biology

    pub_type: 临床试验,杂志文章,随机对照试验

    doi:10.1016/j.redox.2016.05.007

    authors: Rasmussen ST,Andersen JT,Nielsen TK,Cejvanovic V,Petersen KM,Henriksen T,Weimann A,Lykkesfeldt J,Poulsen HE

    更新日期:2016-10-01 00:00:00

  • Oxidation of protein disulfide bonds by singlet oxygen gives rise to glutathionylated proteins.

    abstract::Disulfide bonds play a key function in determining the structure of proteins, and are the most strongly conserved compositional feature across proteomes. They are particularly common in extracellular environments, such as the extracellular matrix and plasma, and in proteins that have structural (e.g. matrix) or bindin...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101822

    authors: Jiang S,Carroll L,Rasmussen LM,Davies MJ

    更新日期:2021-01-01 00:00:00

  • The dual role of poly(ADP-ribose) polymerase-1 in modulating parthanatos and autophagy under oxidative stress in rat cochlear marginal cells of the stria vascularis.

    abstract::Oxidative stress is reported to regulate several apoptotic and necrotic cell death pathways in auditory tissues. Poly(ADP-ribose) polymerase-1 (PARP-1) can be activated under oxidative stress, which is the hallmark of parthanatos. Autophagy, which serves either a pro-survival or pro-death function, can also be stimula...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.10.002

    authors: Jiang HY,Yang Y,Zhang YY,Xie Z,Zhao XY,Sun Y,Kong WJ

    更新日期:2018-04-01 00:00:00

  • Glutathione maintenance mitigates age-related susceptibility to redox cycling agents.

    abstract::Isolated hepatocytes from young (4-6mo) and old (24-26mo) F344 rats were exposed to increasing concentrations of menadione, a vitamin K derivative and redox cycling agent, to determine whether the age-related decline in Nrf2-mediated detoxification defenses resulted in heightened susceptibility to xenobiotic insult. A...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2016.09.010

    authors: Thomas NO,Shay KP,Kelley AR,Butler JA,Hagen TM

    更新日期:2016-12-01 00:00:00

  • Oxygen delivery, consumption, and conversion to reactive oxygen species in experimental models of diabetic retinopathy.

    abstract::Retinal tissue receives its supply of oxygen from two sources - the retinal and choroidal circulations. Decreases in retinal blood flow occur in the early stages of diabetes, with the eventual development of hypoxia thought to contribute to pathological neovascularization. Oxygen consumption in the retina has been fou...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2014.04.006

    authors: Eshaq RS,Wright WS,Harris NR

    更新日期:2014-04-18 00:00:00

  • Single cell-based fluorescence lifetime imaging of intracellular oxygenation and metabolism.

    abstract::Oxidation-reduction chemistry is fundamental to the metabolism of all living organisms, and hence quantifying the principal redox players is important for a comprehensive understanding of cell metabolism in normal and pathological states. In mammalian cells, this is accomplished by measuring oxygen partial pressure (p...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101549

    authors: Penjweini R,Roarke B,Alspaugh G,Gevorgyan A,Andreoni A,Pasut A,Sackett DL,Knutson JR

    更新日期:2020-07-01 00:00:00

  • A quantitative study of the cell-type specific modulation of c-Rel by hydrogen peroxide and TNF-α.

    abstract::Hydrogen peroxide (H2O2) at moderate steady-state concentrations synergizes with TNF-α, leading to increased nuclear levels of NF-κB p65 subunit and to a cell-type specific up-regulation of a limited number of NF-κB-dependent genes. Here, we address how H2O2 achieves this molecular specificity. HeLa and MCF-7 cells we...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2013.05.004

    authors: Oliveira-Marques V,Silva T,Cunha F,Covas G,Marinho HS,Antunes F,Cyrne L

    更新日期:2013-06-21 00:00:00

  • Redox regulation of ischemic limb neovascularization - What we have learned from animal studies.

    abstract::Mouse hindlimb ischemia has been widely used as a model to study peripheral artery disease. Genetic modulation of the enzymatic source of oxidants or components of the antioxidant system reveal that physiological levels of oxidants are essential to promote the process of arteriogenesis and angiogenesis after femoral a...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2017.04.040

    authors: Matsui R,Watanabe Y,Murdoch CE

    更新日期:2017-08-01 00:00:00

  • Formation of 2-nitrophenol from salicylaldehyde as a suitable test for low peroxynitrite fluxes.

    abstract::There has been some dispute regarding reaction products formed at physiological peroxynitrite fluxes in the nanomolar range with phenolic molecules, when used to predict the behavior of protein-bound aromatic amino acids like tyrosine. Previous data showed that at nanomolar fluxes of peroxynitrite, nitration of these ...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2015.11.008

    authors: Mikhed Y,Bruns K,Schildknecht S,Jörg M,Dib M,Oelze M,Lackner KJ,Münzel T,Ullrich V,Daiber A

    更新日期:2016-04-01 00:00:00

  • Redox modulation of muscle mass and function.

    abstract::Muscle mass and strength are very important for exercise performance. Training-induced musculoskeletal injuries usually require periods of complete immobilization to prevent any muscle contraction of the affected muscle groups. Disuse muscle wasting will likely affect every sport practitioner in his or her lifetime. E...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2020.101531

    authors: Gomez-Cabrera MC,Arc-Chagnaud C,Salvador-Pascual A,Brioche T,Chopard A,Olaso-Gonzalez G,Viña J

    更新日期:2020-08-01 00:00:00

  • SA inhibits complex III activity to generate reactive oxygen species and thereby induces GA overproduction in Ganoderma lucidum.

    abstract::Ganoderma lucidum has high commercial value because it produces many active compounds, such as ganoderic acids (GAs). Salicylic acid (SA) was previously reported to induce the biosynthesis of GA in G. lucidum. In this study, we found that SA induces GA biosynthesis by increasing ROS production, and further research fo...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.03.018

    authors: Liu R,Cao P,Ren A,Wang S,Yang T,Zhu T,Shi L,Zhu J,Jiang AL,Zhao MW

    更新日期:2018-06-01 00:00:00

  • Classifying oxidative stress by F2-isoprostane levels across human diseases: A meta-analysis.

    abstract::The notion that oxidative stress plays a role in virtually every human disease and environmental exposure has become ingrained in everyday knowledge. However, mounting evidence regarding the lack of specificity of biomarkers traditionally used as indicators of oxidative stress in human disease and exposures now necess...

    journal_title:Redox biology

    pub_type: 杂志文章,meta分析

    doi:10.1016/j.redox.2017.03.024

    authors: van 't Erve TJ,Kadiiska MB,London SJ,Mason RP

    更新日期:2017-08-01 00:00:00

  • Redox regulation of proteasome function.

    abstract::Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) were initially regarded mainly as metabolic by-products with damaging properties. Over the last decade, our understanding of their role in metabolism was drastically changed and they were recognized as essential mediators in cellular signaling cascades,...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2017.07.005

    authors: Lefaki M,Papaevgeniou N,Chondrogianni N

    更新日期:2017-10-01 00:00:00

  • miR-200a-5p regulates myocardial necroptosis induced by Se deficiency via targeting RNF11.

    abstract::Necroptosis has been discovered as a new paradigm of cell death and may play a key role in heart disease and selenium (Se) deficiency. Hence, we detected the specific microRNA (miRNA) in response to Se-deficient heart using microRNAome analysis. For high-throughput sequencing using Se-deficient chicken cardiac tissue,...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.11.025

    authors: Yang T,Cao C,Yang J,Liu T,Lei XG,Zhang Z,Xu S

    更新日期:2018-05-01 00:00:00

  • SIRT1 inhibition causes oxidative stress and inflammation in patients with coronary artery disease.

    abstract::Coronary artery disease (CAD) is the primary critical cardiovascular event. Endothelial cell and monocyte dysfunction with subsequent extravagant inflammation are the main causes of vessel damage in CAD. Thus, strategies that repress cell death and manage unsuitable pro-inflammatory responses in CAD are potential ther...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.05.027

    authors: Chan SH,Hung CH,Shih JY,Chu PM,Cheng YH,Lin HC,Tsai KL

    更新日期:2017-10-01 00:00:00

  • Metabolic zonation of the liver: The oxygen gradient revisited.

    abstract::The liver has a multitude of functions which are necessary to maintain whole body homeostasis. This requires that various metabolic pathways can run in parallel in the most efficient manner and that futile cycles are kept to a minimum. To a large extent this is achieved due to a functional specialization of the liver ...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2017.01.012

    authors: Kietzmann T

    更新日期:2017-04-01 00:00:00

  • A novel role for NUPR1 in the keratinocyte stress response to UV oxidized phospholipids.

    abstract::Ultraviolet light is the dominant environmental oxidative skin stressor and a major skin aging factor. We studied which oxidized phospholipid (OxPL) mediators would be generated in primary human keratinocytes (KC) upon exposure to ultraviolet A light (UVA) and investigated the contribution of OxPL to UVA responses. Ma...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.11.006

    authors: Narzt MS,Nagelreiter IM,Oskolkova O,Bochkov VN,Latreille J,Fedorova M,Ni Z,Sialana FJ,Lubec G,Filzwieser M,Laggner M,Bilban M,Mildner M,Tschachler E,Grillari J,Gruber F

    更新日期:2019-01-01 00:00:00

  • Differential endothelial signaling responses elicited by chemogenetic H2O2 synthesis.

    abstract::Hydrogen peroxide (H2O2) modulates critical phosphorylation pathways in vascular endothelial cells, many of which affect endothelial nitric oxide synthase (eNOS) signal transduction. Both intracellular and extracellular sources of H2O2 have been implicated in eNOS regulation, yet the specific endothelial pathways rema...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101605

    authors: Saeedi Saravi SS,Eroglu E,Waldeck-Weiermair M,Sorrentino A,Steinhorn B,Belousov V,Michel T

    更新日期:2020-09-01 00:00:00

  • Fundc1-dependent mitophagy is obligatory to ischemic preconditioning-conferred renoprotection in ischemic AKI via suppression of Drp1-mediated mitochondrial fission.

    abstract::FUN14 domain-containing protein 1 (Fundc1)-dependent mitophagy, mainly activated by ischemic/hypoxic preconditioning, benefits acute myocardial reperfusion injury and chronic metabolic syndrome via sustaining mitochondrial homeostasis. Mitochondrial fission plays a pathogenic role in ischemic acute kidney injury (AKI)...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101415

    authors: Wang J,Zhu P,Li R,Ren J,Zhou H

    更新日期:2020-02-01 00:00:00

  • Sulfite-induced protein radical formation in LPS aerosol-challenged mice: Implications for sulfite sensitivity in human lung disease.

    abstract::Exposure to (bi)sulfite (HSO3-) and sulfite (SO32-) has been shown to induce a wide range of adverse reactions in sensitive individuals. Studies have shown that peroxidase-catalyzed oxidation of (bi)sulfite leads to formation of several reactive free radicals, such as sulfur trioxide anion (.SO3-), peroxymonosulfate (...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.12.014

    authors: Kumar A,Triquigneaux M,Madenspacher J,Ranguelova K,Bang JJ,Fessler MB,Mason RP

    更新日期:2018-05-01 00:00:00

  • Molecular chaperones and proteostasis regulation during redox imbalance.

    abstract::Free radicals originate from both exogenous environmental sources and as by-products of the respiratory chain and cellular oxygen metabolism. Sustained accumulation of free radicals, beyond a physiological level, induces oxidative stress that is harmful for the cellular homeodynamics as it promotes the oxidative damag...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2014.01.017

    authors: Niforou K,Cheimonidou C,Trougakos IP

    更新日期:2014-01-30 00:00:00

  • The aryl hydrocarbon receptor as a target of environmental stressors - Implications for pollution mediated stress and inflammatory responses.

    abstract::The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor regulating the expression of genes, for instance encoding the monooxygenases cytochrome P450 (CYP) 1A1 and CYP1A2, which are important enzymes in metabolism of xenobiotics. The AHR is activated upon binding of polycyclic aromatic hydrocarbo...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2020.101530

    authors: Vogel CFA,Van Winkle LS,Esser C,Haarmann-Stemmann T

    更新日期:2020-07-01 00:00:00