Redox status in mammalian cells and stem cells during culture in vitro: critical roles of Nrf2 and cystine transporter activity in the maintenance of redox balance.

Abstract:

:Culturing cells and tissues in vitro has provided valuable insights into the molecular mechanisms regulating redox signaling in cells with implications for medicine. However, standard culture techniques maintain mammalian cells in vitro under an artificial physicochemical environment such as ambient air and 5% CO2. Oxidative stress is caused by the rapid oxidation of cysteine to cystine in culture media catalyzed by transition metals, leading to diminished intracellular cysteine and glutathione (GSH) pools. Some cells, such as fibroblasts and macrophages, express cystine transport activity, designated as system [Formula: see text], which enables cells to maintain these pools to counteract oxidative stress. Additionally, many cells have the ability to activate the redox sensitive transcription factor Nrf2, a master regulator of cellular defenses against oxidative stress, and to upregulate xCT, the subunit of the [Formula: see text] transport system leading to increases in cellular GSH. In contrast, some cells, including lymphoid cells, embryonic stem cells and iPS cells, express relatively low levels of xCT and cannot maintain cellular cysteine and GSH pools. Thus, fibroblasts have been used as feeder cells for the latter cell types based on their ability to supply cysteine. Other key Nrf2 regulated gene products include heme oxygenase 1, peroxiredoxin 1 and sequestosome1. In macrophages, oxidized LDL activates Nrf2 and upregulates the scavenger receptor CD36 forming a positive feedback loop to facilitate removal of the oxidant from the vascular microenvironment. This review describes cell type specific responses to oxygen derived stress, and the key roles that activation of Nrf2 and membrane transport of cystine and cysteine play in the maintenance and proliferation of mammalian cells in culture.

journal_name

Redox Biol

journal_title

Redox biology

authors

Ishii T,Mann GE

doi

10.1016/j.redox.2014.04.008

subject

Has Abstract

pub_date

2014-04-18 00:00:00

pages

786-94

issn

2213-2317

pii

S2213-2317(14)00061-5

journal_volume

2

pub_type

杂志文章,评审
  • Hydrogen peroxide as a signal for skeletal muscle adaptations to exercise: What do concentrations tell us about potential mechanisms?

    abstract::Hydrogen peroxide appears to be the key reactive oxygen species involved in redox signalling, but comparisons of the low concentrations of hydrogen peroxide that are calculated to exist within cells with those previously shown to activate common signalling events in vitro indicate that direct oxidation of key thiol gr...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2020.101484

    authors: Jackson MJ,Stretton C,McArdle A

    更新日期:2020-08-01 00:00:00

  • Critical role of vascular peroxidase 1 in regulating endothelial nitric oxide synthase.

    abstract::Vascular peroxidase 1 (VPO1) is a member of the peroxidase family which aggravates oxidative stress by producing hypochlorous acid (HOCl). Our previous study demonstrated that VPO1 plays a critical role in endothelial dysfunction through dimethylarginine dimethylaminohydrolase2 (DDAH2)/asymmetric Dimethylarginine (ADM...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.02.022

    authors: Liu Z,Liu Y,Xu Q,Peng H,Tang Y,Yang T,Yu Z,Cheng G,Zhang G,Shi R

    更新日期:2017-08-01 00:00:00

  • Activation of the mechanosensitive Ca2+ channel TRPV4 induces endothelial barrier permeability via the disruption of mitochondrial bioenergetics.

    abstract::Mechanical ventilation is a life-saving intervention in critically ill patients with respiratory failure due to acute respiratory distress syndrome (ARDS), a refractory lung disease with an unacceptable high mortality rate. Paradoxically, mechanical ventilation also creates excessive mechanical stress that directly au...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101785

    authors: Lu Q,Zemskov EA,Sun X,Wang H,Yegambaram M,Wu X,Garcia-Flores A,Song S,Tang H,Kangath A,Cabanillas GZ,Yuan JX,Wang T,Fineman JR,Black SM

    更新日期:2021-01-01 00:00:00

  • Mst1 deletion attenuates renal ischaemia-reperfusion injury: The role of microtubule cytoskeleton dynamics, mitochondrial fission and the GSK3β-p53 signalling pathway.

    abstract::Despite extensive research that has been carried out over the past three decades in the field of renal ischaemia-reperfusion (I/R) injury, the pathogenic role of mitochondrial fission in renal I/R injury is poorly understood. The aim of our study is to investigate the molecular mechanism by which mammalian STE20-like ...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.10.012

    authors: Li H,Feng J,Zhang Y,Feng J,Wang Q,Zhao S,Meng P,Li J

    更新日期:2019-01-01 00:00:00

  • Redox signaling during hypoxia in mammalian cells.

    abstract::Hypoxia triggers a wide range of protective responses in mammalian cells, which are mediated through transcriptional and post-translational mechanisms. Redox signaling in cells by reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) occurs through the reversible oxidation of cysteine thiol groups, resulting ...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2017.05.020

    authors: Smith KA,Waypa GB,Schumacker PT

    更新日期:2017-10-01 00:00:00

  • Impairment of HIF-1α-mediated metabolic adaption by NRF2-silencing in breast cancer cells.

    abstract::Hypoxia, a common element in the tumor environment, leads to Hypoxia-Inducible Factor-1α (HIF-1α) stabilization to modulate cellular metabolism as an adaptive response. In a previous study, we showed that inhibition of the nuclear factor erythroid 2-like-2 (NFE2L2; NRF2), a master regulator of many genes coping with e...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101210

    authors: Lee S,Hallis SP,Jung KA,Ryu D,Kwak MK

    更新日期:2019-06-01 00:00:00

  • HIV TAT-mediated microglial senescence: Role of SIRT3-dependent mitochondrial oxidative stress.

    abstract::The advent of combined antiretroviral treatment (cART) as a treatment for HIV-1 infection has not only resulted in a dramatic decrease in the peripheral viral load but has also led to increased life expectancy of the infected individuals. Paradoxically, increased lifespan is accompanied with higher prevalence of age-r...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101843

    authors: Thangaraj A,Chivero ET,Tripathi A,Singh S,Niu F,Guo ML,Pillai P,Periyasamy P,Buch S

    更新日期:2020-12-23 00:00:00

  • Low sulfide levels and a high degree of cystathionine β-synthase (CBS) activation by S-adenosylmethionine (SAM) in the long-lived naked mole-rat.

    abstract::Hydrogen sulfide (H2S) is a gaseous signalling molecule involved in many physiological and pathological processes. There is increasing evidence that H2S is implicated in aging and lifespan control in the diet-induced longevity models. However, blood sulfide concentration of naturally long-lived species is not known. H...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2016.01.008

    authors: Dziegelewska M,Holtze S,Vole C,Wachter U,Menzel U,Morhart M,Groth M,Szafranski K,Sahm A,Sponholz C,Dammann P,Huse K,Hildebrandt T,Platzer M

    更新日期:2016-08-01 00:00:00

  • Mitochondrial oxidative stress in the retinal pigment epithelium (RPE) led to metabolic dysfunction in both the RPE and retinal photoreceptors.

    abstract::Age-related macular degeneration (AMD) is the leading cause of vision loss in the western world. Recent evidence suggests that RPE and photoreceptors have an interconnected metabolism and that mitochondrial damage in RPE is a trigger for degeneration in both RPE and photoreceptors in AMD. To test this hypothesis, this...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101201

    authors: Brown EE,DeWeerd AJ,Ildefonso CJ,Lewin AS,Ash JD

    更新日期:2019-06-01 00:00:00

  • Effects of the isoflavone prunetin on gut health and stress response in male Drosophila melanogaster.

    abstract::The traditional Asian diet is rich in fruits, vegetables and soy, the latter representing a significant source of dietary isoflavones. The isoflavone prunetin was recently identified to improve intestinal epithelial barrier function in vitro and to ameliorate general survival and overall health state in vivo in male D...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2016.01.001

    authors: Piegholdt S,Rimbach G,Wagner AE

    更新日期:2016-08-01 00:00:00

  • Triggering apoptosis by oroxylin A through caspase-8 activation and p62/SQSTM1 proteolysis.

    abstract::Emerging evidence suggests that oroxylin A exhibits antitumor effects by inducing cell apoptosis. However, the involved molecular mechanisms have not been elucidated. Here we report that the apoptosis induced by oroxylin A was dependent on p62-mediated activation of caspase-8 in hepatocellular carcinoma cells. Further...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101392

    authors: Zhao Y,Zhu Q,Bu X,Zhou Y,Bai D,Guo Q,Gao Y,Lu N

    更新日期:2020-01-01 00:00:00

  • Redox mechanisms in age-related lung fibrosis.

    abstract::Redox signaling and oxidative stress are associated with tissue fibrosis and aging. Aging is recognized as a major risk factor for fibrotic diseases involving multiple organ systems, including that of the lung. A number of oxidant generating enzymes are upregulated while antioxidant defenses are deficient with aging a...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2016.06.005

    authors: Kurundkar A,Thannickal VJ

    更新日期:2016-10-01 00:00:00

  • Metabolic zonation of the liver: The oxygen gradient revisited.

    abstract::The liver has a multitude of functions which are necessary to maintain whole body homeostasis. This requires that various metabolic pathways can run in parallel in the most efficient manner and that futile cycles are kept to a minimum. To a large extent this is achieved due to a functional specialization of the liver ...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2017.01.012

    authors: Kietzmann T

    更新日期:2017-04-01 00:00:00

  • Redox-fibrosis: Impact of TGFβ1 on ROS generators, mediators and functional consequences.

    abstract::Fibrosis is one of the most prevalent features of age-related diseases like obesity, diabetes, non-alcoholic fatty liver disease, chronic kidney disease, or cardiomyopathy and affects millions of people in all countries. Although the understanding about the pathophysiology of fibrosis has improved a lot during the rec...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2015.08.015

    authors: Richter K,Konzack A,Pihlajaniemi T,Heljasvaara R,Kietzmann T

    更新日期:2015-12-01 00:00:00

  • Endothelial nitric oxide synthase in red blood cells: key to a new erythrocrine function?

    abstract::Red blood cells (RBC) have been considered almost exclusively as a transporter of metabolic gases and nutrients for the tissues. It is an accepted dogma that RBCs take up and inactivate endothelium-derived NO via rapid reaction with oxyhemoglobin to form methemoglobin and nitrate, thereby limiting NO available for vas...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2013.12.027

    authors: Cortese-Krott MM,Kelm M

    更新日期:2014-01-09 00:00:00

  • Enhanced autophagic-lysosomal activity and increased BAG3-mediated selective macroautophagy as adaptive response of neuronal cells to chronic oxidative stress.

    abstract::Oxidative stress and a disturbed cellular protein homeostasis (proteostasis) belong to the most important hallmarks of aging and of neurodegenerative disorders. The proteasomal and autophagic-lysosomal degradation pathways are key measures to maintain proteostasis. Here, we report that hippocampal cells selected for f...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101181

    authors: Chakraborty D,Felzen V,Hiebel C,Stürner E,Perumal N,Manicam C,Sehn E,Grus F,Wolfrum U,Behl C

    更新日期:2019-06-01 00:00:00

  • Ferroptosis is governed by differential regulation of transcription in liver cancer.

    abstract::Ferroptosis is an outcome of metabolic disorders and closely linked to liver cancer. However, the mechanism underlying the fine regulation of ferroptosis in liver cancer remains unclear. Here, we have identified two categories of genes: ferroptosis up-regulated factors (FUF) and ferroptosis down-regulated factors (FDF...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101211

    authors: Zhang X,Du L,Qiao Y,Zhang X,Zheng W,Wu Q,Chen Y,Zhu G,Liu Y,Bian Z,Guo S,Yang Y,Ma L,Yu Y,Pan Q,Sun F,Wang J

    更新日期:2019-06-01 00:00:00

  • A novel compound DBZ ameliorates neuroinflammation in LPS-stimulated microglia and ischemic stroke rats: Role of Akt(Ser473)/GSK3β(Ser9)-mediated Nrf2 activation.

    abstract::Microglia-mediated neuroinflammation plays a crucial role in the pathophysiological process of multiple neurological disorders such as ischemic stroke, yet lacks effective therapeutic agents. Previously, we discovered one novel synthetic compound, tanshinol borneol ester (DBZ), possesses anti-inflammatory and anti-ath...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101644

    authors: Liao S,Wu J,Liu R,Wang S,Luo J,Yang Y,Qin Y,Li T,Zheng X,Song J,Zhao X,Xiao C,Zhang Y,Bian L,Jia P,Bai Y,Zheng X

    更新日期:2020-09-01 00:00:00

  • Impact of inhibition of the autophagy-lysosomal pathway on biomolecules carbonylation and proteome regulation in rat cardiac cells.

    abstract::Cells employ multiple defence mechanisms to sustain a wide range of stress conditions associated with accumulation of modified self-biomolecules leading to lipo- and proteotoxicity. One of such mechanisms involves activation of the autophagy-lysosomal pathway for removal and degradation of modified lipids, proteins an...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101123

    authors: Coliva G,Duarte S,Pérez-Sala D,Fedorova M

    更新日期:2019-05-01 00:00:00

  • TRPM2 channel-mediated cell death: An important mechanism linking oxidative stress-inducing pathological factors to associated pathological conditions.

    abstract::Oxidative stress resulting from the accumulation of high levels of reactive oxygen species is a salient feature of, and a well-recognised pathological factor for, diverse pathologies. One common mechanism for oxidative stress damage is via the disruption of intracellular ion homeostasis to induce cell death. TRPM2 is ...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2020.101755

    authors: Malko P,Jiang LH

    更新日期:2020-10-01 00:00:00

  • Lung epithelial protein disulfide isomerase A3 (PDIA3) plays an important role in influenza infection, inflammation, and airway mechanics.

    abstract::Protein disulfide isomerases (PDI) are a family of redox chaperones that catalyze formation or isomerization of disulfide bonds in proteins. Previous studies have shown that one member, PDIA3, interacts with influenza A virus (IAV) hemagglutinin (HA), and this interaction is required for efficient oxidative folding of...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101129

    authors: Chamberlain N,Korwin-Mihavics BR,Nakada EM,Bruno SR,Heppner DE,Chapman DG,Hoffman SM,van der Vliet A,Suratt BT,Dienz O,Alcorn JF,Anathy V

    更新日期:2019-04-01 00:00:00

  • Redox regulation of ischemic limb neovascularization - What we have learned from animal studies.

    abstract::Mouse hindlimb ischemia has been widely used as a model to study peripheral artery disease. Genetic modulation of the enzymatic source of oxidants or components of the antioxidant system reveal that physiological levels of oxidants are essential to promote the process of arteriogenesis and angiogenesis after femoral a...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2017.04.040

    authors: Matsui R,Watanabe Y,Murdoch CE

    更新日期:2017-08-01 00:00:00

  • Sexual hormones regulate the redox status and mitochondrial function in the brain. Pathological implications.

    abstract::Compared to other organs, the brain is especially exposed to oxidative stress. In general, brains from young females tend to present lower oxidative damage in comparison to their male counterparts. This has been attributed to higher antioxidant defenses and a better mitochondrial function in females, which has been li...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2020.101505

    authors: Torrens-Mas M,Pons DG,Sastre-Serra J,Oliver J,Roca P

    更新日期:2020-04-01 00:00:00

  • Increased oxidative stress mediates the antitumor effect of PARP inhibition in ovarian cancer.

    abstract::PARP inhibitors have been widely tested in clinical trials, especially for the treatment of breast cancer and ovarian cancer, and were shown to be highly successful. Because PARP primarily functions in sensing and repairing DNA strand breaks, the therapeutic effect of PARP inhibition is generally believed to be attrib...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.03.016

    authors: Hou D,Liu Z,Xu X,Liu Q,Zhang X,Kong B,Wei JJ,Gong Y,Shao C

    更新日期:2018-07-01 00:00:00

  • Nitric oxide-mediated sensitization of resistant tumor cells to apoptosis by chemo-immunotherapeutics.

    abstract::The generation of NO by the various NO synthases in normal and malignant tissues is manifested by various biological effects that are involved in the regulation of cell survival, differentiation and cell death. The role of NO in the cytotoxic immune response was first revealed by demonstrating the induction of iNOS in...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2015.08.013

    authors: Bonavida B,Garban H

    更新日期:2015-12-01 00:00:00

  • Mapping glutathione utilization in the developing zebrafish (Danio rerio) embryo.

    abstract::Glutathione (GSH), the most abundant vertebrate endogenous redox buffer, plays key roles in organogenesis and embryonic development, however, organ-specific GSH utilization during development remains understudied. Monochlorobimane (MCB), a dye conjugated with GSH by glutathione-s-transferase (GST) to form a fluorescen...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101235

    authors: Rastogi A,Clark CW,Conlin SM,Brown SE,Timme-Laragy AR

    更新日期:2019-09-01 00:00:00

  • Redoxins as gatekeepers of the transcriptional oxidative stress response.

    abstract::Transcription factors control the rate of transcription of genetic information from DNA to messenger RNA, by binding specific DNA sequences in promoter regions. Transcriptional gene control is a rate-limiting process that is tightly regulated and based on transient environmental signals which are translated into long-...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2019.101104

    authors: Hopkins BL,Neumann CA

    更新日期:2019-02-01 00:00:00

  • Single cell-based fluorescence lifetime imaging of intracellular oxygenation and metabolism.

    abstract::Oxidation-reduction chemistry is fundamental to the metabolism of all living organisms, and hence quantifying the principal redox players is important for a comprehensive understanding of cell metabolism in normal and pathological states. In mammalian cells, this is accomplished by measuring oxygen partial pressure (p...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101549

    authors: Penjweini R,Roarke B,Alspaugh G,Gevorgyan A,Andreoni A,Pasut A,Sackett DL,Knutson JR

    更新日期:2020-07-01 00:00:00

  • Ozone inhalation modifies the rat liver proteome.

    abstract::Ozone (O3) is a serious public health concern. Recent findings indicate that the damaging health effects of O3 extend to multiple systemic organ systems. Herein, we hypothesize that O3 inhalation will cause downstream alterations to the liver. To test this, male Sprague-Dawley rats were exposed to 0.5ppm O3 for 8h/day...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2013.11.006

    authors: Theis WS,Andringa KK,Millender-Swain T,Dickinson DA,Postlethwait EM,Bailey SM

    更新日期:2014-01-01 00:00:00

  • Nitric oxide prevents Aft1 activation and metabolic remodeling in frataxin-deficient yeast.

    abstract::Yeast frataxin homolog (Yfh1) is the orthologue of human frataxin, a mitochondrial protein whose deficiency causes Friedreich Ataxia. Yfh1 deficiency activates Aft1, a transcription factor governing iron homeostasis in yeast cells. Although the mechanisms causing this activation are not completely understood, it is as...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.09.001

    authors: Alsina D,Ros J,Tamarit J

    更新日期:2018-04-01 00:00:00