Modulation of FLT3 signal transduction through cytoplasmic cysteine residues indicates the potential for redox regulation.

Abstract:

:Oxidative modification of cysteine residues has been shown to regulate the activity of several protein-tyrosine kinases. We explored the possibility that Fms-like tyrosine kinase 3 (FLT3), a hematopoietic receptor-tyrosine kinase, is subject to this type of regulation. An underlying rationale was that the FLT3 gene is frequently mutated in Acute Myeloid Leukemia patients, and resulting oncogenic variants of FLT3 with 'internal tandem duplications (FLT3ITD)' drive production of reactive oxygen in leukemic cells. FLT3 was moderately activated by treatment of intact cells with hydrogen peroxide. Conversely, FLT3ITD signaling was attenuated by cell treatments with agents inhibiting formation of reactive oxygen species. FLT3 and FLT3ITD incorporated DCP-Bio1, a reagent specifically reacting with sulfenic acid residues. Mutation of FLT3ITD cysteines 695 and 790 reduced DCP-Bio1 incorporation, suggesting that these sites are subject to oxidative modification. Functional characterization of individual FLT3ITD cysteine-to-serine mutants of all 8 cytoplasmic cysteines revealed phenotypes in kinase activity, signal transduction and cell transformation. Replacement of cysteines 681, 694, 695, 807, 925, and 945 attenuated signaling and blocked FLT3ITD-mediated cell transformation, whereas mutation of cysteine 790 enhanced activity of both FLT3ITD and wild-type FLT3. These effects were not related to altered FLT3ITD dimerization, but likely caused by changed intramolecular interactions. The findings identify the functional relevance of all cytoplasmic FLT3ITD cysteines, and indicate the potential for redox regulation of this clinically important oncoprotein.

journal_name

Redox Biol

journal_title

Redox biology

authors

Böhmer A,Barz S,Schwab K,Kolbe U,Gabel A,Kirkpatrick J,Ohlenschläger O,Görlach M,Böhmer FD

doi

10.1016/j.redox.2019.101325

subject

Has Abstract

pub_date

2020-01-01 00:00:00

pages

101325

issn

2213-2317

pii

S2213-2317(19)30559-2

journal_volume

28

pub_type

杂志文章
  • Oxygen delivery, consumption, and conversion to reactive oxygen species in experimental models of diabetic retinopathy.

    abstract::Retinal tissue receives its supply of oxygen from two sources - the retinal and choroidal circulations. Decreases in retinal blood flow occur in the early stages of diabetes, with the eventual development of hypoxia thought to contribute to pathological neovascularization. Oxygen consumption in the retina has been fou...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2014.04.006

    authors: Eshaq RS,Wright WS,Harris NR

    更新日期:2014-04-18 00:00:00

  • Selective cytotoxicity of the herbal substance acteoside against tumor cells and its mechanistic insights.

    abstract::Natural products are characterized by extreme structural diversity and thus they offer a unique source for the identification of novel anti-tumor agents. Herein, we report that the herbal substance acteoside being isolated by advanced phytochemical methods from Lippia citriodora leaves showed enhanced cytotoxicity aga...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.02.015

    authors: Cheimonidi C,Samara P,Polychronopoulos P,Tsakiri EN,Nikou T,Myrianthopoulos V,Sakellaropoulos T,Zoumpourlis V,Mikros E,Papassideri I,Argyropoulou A,Halabalaki M,Alexopoulos LG,Skaltsounis AL,Tsitsilonis OE,Aligiannis NN,T

    更新日期:2018-06-01 00:00:00

  • Loss of the ubiquitin conjugating enzyme UBE2E3 induces cellular senescence.

    abstract::Cellular senescence plays essential roles in tissue homeostasis as well as a host of diseases ranging from cancers to age-related neurodegeneration. Various molecular pathways can induce senescence and these different pathways dictate the phenotypic and metabolic changes that accompany the transition to, and maintenan...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.05.008

    authors: Plafker KS,Zyla K,Berry W,Plafker SM

    更新日期:2018-07-01 00:00:00

  • Oxidative stress-induced premature senescence dysregulates VEGF and CFH expression in retinal pigment epithelial cells: Implications for Age-related Macular Degeneration.

    abstract::Oxidative stress has a critical role in the pathogenesis of Age-related Macular Degeneration (AMD), a multifactorial disease that includes age, gene variants of complement regulatory proteins and smoking as the main risk factors. Stress-induced premature cellular senescence (SIPS) is postulated to contribute to this c...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2015.11.011

    authors: Marazita MC,Dugour A,Marquioni-Ramella MD,Figueroa JM,Suburo AM

    更新日期:2016-04-01 00:00:00

  • Ozone inhalation modifies the rat liver proteome.

    abstract::Ozone (O3) is a serious public health concern. Recent findings indicate that the damaging health effects of O3 extend to multiple systemic organ systems. Herein, we hypothesize that O3 inhalation will cause downstream alterations to the liver. To test this, male Sprague-Dawley rats were exposed to 0.5ppm O3 for 8h/day...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2013.11.006

    authors: Theis WS,Andringa KK,Millender-Swain T,Dickinson DA,Postlethwait EM,Bailey SM

    更新日期:2014-01-01 00:00:00

  • Vitamin D receptor activation regulates microglia polarization and oxidative stress in spontaneously hypertensive rats and angiotensin II-exposed microglial cells: Role of renin-angiotensin system.

    abstract::Hypertension is one of the major predisposing factors for neurodegenerative disease characterized with activated renin-angiotensin system (RAS) in both periphery and brain. Vitamin D (VitD) is recently recognized as a pleiotropic hormone with strong neuroprotective properties. While multiple lines of evidence suggest ...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101295

    authors: Cui C,Xu P,Li G,Qiao Y,Han W,Geng C,Liao D,Yang M,Chen D,Jiang P

    更新日期:2019-09-01 00:00:00

  • TMEM126B deficiency reduces mitochondrial SDH oxidation by LPS, attenuating HIF-1α stabilization and IL-1β expression.

    abstract::Mitochondrial derived reactive oxygen species (mtROS) are known for their signaling qualities in both physiology and pathology. To elucidate mitochondrial complex I-dependent ROS-signaling after lipopolysaccharide (LPS)-stimulation THP-1 macrophages with a knockdown of the transmembrane protein TMEM126B were generated...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.10.007

    authors: Fuhrmann DC,Wittig I,Brüne B

    更新日期:2019-01-01 00:00:00

  • Electrophiles modulate glutathione reductase activity via alkylation and upregulation of glutathione biosynthesis.

    abstract::Cells evolved robust homeostatic mechanisms to protect against oxidation or alkylation by electrophilic species. Glutathione (GSH) is the most abundant intracellular thiol, protects cellular components from oxidation and is maintained in a reduced state by glutathione reductase (GR). Nitro oleic acid (NO2-OA) is an el...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.11.008

    authors: Jobbagy S,Vitturi DA,Salvatore SR,Turell L,Pires MF,Kansanen E,Batthyany C,Lancaster JR Jr,Freeman BA,Schopfer FJ

    更新日期:2019-02-01 00:00:00

  • Accelerated FASTK mRNA degradation induced by oxidative stress is responsible for the destroyed myocardial mitochondrial gene expression and respiratory function in alcoholic cardiomyopathy.

    abstract::Chronic alcoholism disrupts mitochondrial function and often results in alcoholic cardiomyopathy (ACM). Fas-activated serine/threonine kinase (FASTK) is newly recognized as a key post-transcriptional regulator of mitochondrial gene expression. However, the modulatory role of FASTK in cardiovascular pathophysiology rem...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101778

    authors: Zhang F,Wang K,Zhang S,Li J,Fan R,Chen X,Pei J

    更新日期:2021-01-01 00:00:00

  • Selenium-binding protein 1 (SELENBP1) is a marker of mature adipocytes.

    abstract::Selenium-binding protein 1 (SELENBP1) has recently been reported to catalyse the oxidation of methanethiol, an organosulfur compound produced by gut microbiota. Two of the reaction products of methanethiol oxidation, hydrogen peroxide and hydrogen sulphide, serve as signalling molecules for cell differentiation. Indee...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.11.004

    authors: Steinbrenner H,Micoogullari M,Hoang NA,Bergheim I,Klotz LO,Sies H

    更新日期:2019-01-01 00:00:00

  • Redox balance influences differentiation status of neuroblastoma in the presence of all-trans retinoic acid.

    abstract::Neuroblastoma is the most common extra-cranial solid tumor in childhood; and patients in stage IV of the disease have a high propensity for tumor recurrence. Retinoid therapy has been utilized as a means to induce differentiation of tumor cells and to inhibit relapse. In this study, the expression of a common neuronal...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2015.11.012

    authors: Silvis AM,McCormick ML,Spitz DR,Kiningham KK

    更新日期:2016-04-01 00:00:00

  • The dual role of poly(ADP-ribose) polymerase-1 in modulating parthanatos and autophagy under oxidative stress in rat cochlear marginal cells of the stria vascularis.

    abstract::Oxidative stress is reported to regulate several apoptotic and necrotic cell death pathways in auditory tissues. Poly(ADP-ribose) polymerase-1 (PARP-1) can be activated under oxidative stress, which is the hallmark of parthanatos. Autophagy, which serves either a pro-survival or pro-death function, can also be stimula...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.10.002

    authors: Jiang HY,Yang Y,Zhang YY,Xie Z,Zhao XY,Sun Y,Kong WJ

    更新日期:2018-04-01 00:00:00

  • SA inhibits complex III activity to generate reactive oxygen species and thereby induces GA overproduction in Ganoderma lucidum.

    abstract::Ganoderma lucidum has high commercial value because it produces many active compounds, such as ganoderic acids (GAs). Salicylic acid (SA) was previously reported to induce the biosynthesis of GA in G. lucidum. In this study, we found that SA induces GA biosynthesis by increasing ROS production, and further research fo...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.03.018

    authors: Liu R,Cao P,Ren A,Wang S,Yang T,Zhu T,Shi L,Zhu J,Jiang AL,Zhao MW

    更新日期:2018-06-01 00:00:00

  • Genome-wide transcriptional effects of deletions of sulphur metabolism genes in Drosophila melanogaster.

    abstract::In recent years, the gasotransmitter hydrogen sulphide (H2S), produced by the transsulphuration pathway, has been recognized as a biological mediator playing an important role under normal conditions and in various pathologies in both eukaryotes and prokaryotes. The transsulphuration pathway (TSP) includes the convers...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101654

    authors: Zatsepina O,Karpov D,Chuvakova L,Rezvykh A,Funikov S,Sorokina S,Zakluta A,Garbuz D,Shilova V,Evgen'ev M

    更新日期:2020-09-01 00:00:00

  • Thrombin-induced reactive oxygen species generation in platelets: A novel role for protease-activated receptor 4 and GPIbα.

    abstract:BACKGROUND:Platelets are essential for maintaining haemostasis and play a key role in the pathogenesis of cardiovascular disease. Upon ligation of platelet receptors through subendothelial matrix proteins, intracellular reactive oxygen species (ROS) are generated, further amplifying the platelet activation response. Th...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2015.10.009

    authors: Carrim N,Arthur JF,Hamilton JR,Gardiner EE,Andrews RK,Moran N,Berndt MC,Metharom P

    更新日期:2015-12-01 00:00:00

  • Skin protective and regenerative effects of RM191A, a novel superoxide dismutase mimetic.

    abstract::Superoxide dismutase (SOD) is known to be protective against oxidative stress-mediated skin dysfunction. Here we explore the potential therapeutic activities of RM191A, a novel SOD mimetic, on skin. RM191A is a water-soluble dimeric copper (Cu2+-Cu3+)-centred polyglycine coordination complex. It displays 10-fold highe...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101790

    authors: Shariev A,Menounos S,Laos AJ,Laxman P,Lai D,Hua S,Zinger A,McRae CR,Casbolt LS,Combes V,Smith G,Hung TT,Dixon KM,Thordarson P,Mason RS,Das A

    更新日期:2021-01-01 00:00:00

  • A novel S-sulfhydrated human serum albumin preparation suppresses melanin synthesis.

    abstract::Products of ultraviolet (UV) irradiation such as reactive oxygen species (ROS) and nitric oxide (NO) stimulate melanin synthesis. Reactive sulfur species (RSS) have been shown to have strong ROS and NO scavenging effects. However, the instability and low retention of RSS limit their use as inhibitors of melanin synthe...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.10.007

    authors: Ikeda M,Ishima Y,Kinoshita R,Chuang VTG,Tasaka N,Matsuo N,Watanabe H,Shimizu T,Ishida T,Otagiri M,Maruyama T

    更新日期:2018-04-01 00:00:00

  • (-)-Epicatechin protects the intestinal barrier from high fat diet-induced permeabilization: Implications for steatosis and insulin resistance.

    abstract::Increased permeability of the intestinal barrier is proposed as an underlying factor for obesity-associated pathologies. Consumption of high fat diets (HFD) is associated with increased intestinal permeabilization and increased paracellular transport of endotoxins which can promote steatosis and insulin resistance. Th...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.11.002

    authors: Cremonini E,Wang Z,Bettaieb A,Adamo AM,Daveri E,Mills DA,Kalanetra KM,Haj FG,Karakas S,Oteiza PI

    更新日期:2018-04-01 00:00:00

  • Regulation of the effects of CYP2E1-induced oxidative stress by JNK signaling.

    abstract::The generation of excessive amounts of reactive oxygen species (ROS) leads to cellular oxidative stress that underlies a variety of forms of hepatocyte injury and death including that from alcohol. Although ROS can induce cell damage through direct effects on cellular macromolecules, the injurious effects of ROS are m...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2014.09.004

    authors: Schattenberg JM,Czaja MJ

    更新日期:2014-01-01 00:00:00

  • Oxidative stress during acetaminophen hepatotoxicity: Sources, pathophysiological role and therapeutic potential.

    abstract::Acetaminophen (APAP) hepatotoxicity is characterized by an extensive oxidative stress. However, its source, pathophysiological role and possible therapeutic potential if targeted, have been controversially described. Earlier studies argued for cytochrome P450-generated reactive oxygen species (ROS) during APAP metabol...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2016.10.001

    authors: Du K,Ramachandran A,Jaeschke H

    更新日期:2016-12-01 00:00:00

  • Redox regulation of proteasome function.

    abstract::Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) were initially regarded mainly as metabolic by-products with damaging properties. Over the last decade, our understanding of their role in metabolism was drastically changed and they were recognized as essential mediators in cellular signaling cascades,...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2017.07.005

    authors: Lefaki M,Papaevgeniou N,Chondrogianni N

    更新日期:2017-10-01 00:00:00

  • Oxidation of protein disulfide bonds by singlet oxygen gives rise to glutathionylated proteins.

    abstract::Disulfide bonds play a key function in determining the structure of proteins, and are the most strongly conserved compositional feature across proteomes. They are particularly common in extracellular environments, such as the extracellular matrix and plasma, and in proteins that have structural (e.g. matrix) or bindin...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101822

    authors: Jiang S,Carroll L,Rasmussen LM,Davies MJ

    更新日期:2021-01-01 00:00:00

  • Hydrogen sulfide stimulates xanthine oxidoreductase conversion to nitrite reductase and formation of NO.

    abstract::Cardiovascular disease is the leading cause of death and disability worldwide with increased oxidative stress and reduced NO bioavailability serving as key risk factors. For decades, elevation in protein abundance and enzymatic activity of xanthine oxidoreductase (XOR) under hypoxic/inflammatory conditions has been as...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101447

    authors: Pardue S,Kolluru GK,Shen X,Lewis SE,Saffle CB,Kelley EE,Kevil CG

    更新日期:2020-07-01 00:00:00

  • Single cell-based fluorescence lifetime imaging of intracellular oxygenation and metabolism.

    abstract::Oxidation-reduction chemistry is fundamental to the metabolism of all living organisms, and hence quantifying the principal redox players is important for a comprehensive understanding of cell metabolism in normal and pathological states. In mammalian cells, this is accomplished by measuring oxygen partial pressure (p...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101549

    authors: Penjweini R,Roarke B,Alspaugh G,Gevorgyan A,Andreoni A,Pasut A,Sackett DL,Knutson JR

    更新日期:2020-07-01 00:00:00

  • Differentiating between apparent and actual rates of H2O2 metabolism by isolated rat muscle mitochondria to test a simple model of mitochondria as regulators of H2O2 concentration.

    abstract::Mitochondria are often regarded as a major source of reactive oxygen species (ROS) in animal cells, with H2O2 being the predominant ROS released from mitochondria; however, it has been recently demonstrated that energized brain mitochondria may act as stabilizers of H2O2 concentration (Starkov et al. [1]) based on the...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2015.05.001

    authors: Treberg JR,Munro D,Banh S,Zacharias P,Sotiri E

    更新日期:2015-08-01 00:00:00

  • Statin treatment, oxidative stress and inflammation in a Danish population.

    abstract:BACKGROUND:While statins may have anti-inflammatory effects, anti-oxidative effects are controversial. We investigated if statin treatment is associated with differences in oxidatively generated nucleotide damage and chronic inflammation, and the relationship between nucleotide damage and chronic inflammation. METHODS...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.101088

    authors: Sørensen AL,Hasselbalch HC,Nielsen CH,Poulsen HE,Ellervik C

    更新日期:2019-02-01 00:00:00

  • Using resonance synchronous spectroscopy to characterize the reactivity and electrophilicity of biologically relevant sulfane sulfur.

    abstract::Sulfane sulfur is common inside cells, playing both regulatory and antioxidant roles. However, there are unresolved issues about its chemistry and biochemistry. We report the discovery that reactive sulfane sulfur such as polysulfides and persulfides could be detected by using resonance synchronous spectroscopy (RS2)....

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101179

    authors: Li H,Liu H,Chen Z,Zhao R,Wang Q,Ran M,Xia Y,Hu X,Liu J,Xian M,Xun L

    更新日期:2019-06-01 00:00:00

  • ROS-mediated lysosomal membrane permeabilization is involved in bupivacaine-induced death of rabbit intervertebral disc cells.

    abstract::Bupivacaine is frequently administered for diagnosing and controlling spine-related pain in interventional spine procedures. However, the potential cytotoxic effects of bupivacaine on intervertebral disc (IVD) cells and the underlying molecular mechanisms have not yet been fully established. Here, we showed that bupiv...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.06.010

    authors: Cai X,Liu Y,Hu Y,Liu X,Jiang H,Yang S,Shao Z,Xia Y,Xiong L

    更新日期:2018-09-01 00:00:00

  • Reductive stress impairs myogenic differentiation.

    abstract::Myo-satellite cells regenerate and differentiate into skeletal muscle (SM) after acute or chronic injury. Changes in the redox milieu towards the oxidative arm at the wound site are known to compromise SM regeneration. Recently, we reported that abrogation of Nrf2/antioxidant signaling promotes oxidative stress and im...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101492

    authors: Rajasekaran NS,Shelar SB,Jones DP,Hoidal JR

    更新日期:2020-07-01 00:00:00

  • Lung epithelial protein disulfide isomerase A3 (PDIA3) plays an important role in influenza infection, inflammation, and airway mechanics.

    abstract::Protein disulfide isomerases (PDI) are a family of redox chaperones that catalyze formation or isomerization of disulfide bonds in proteins. Previous studies have shown that one member, PDIA3, interacts with influenza A virus (IAV) hemagglutinin (HA), and this interaction is required for efficient oxidative folding of...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101129

    authors: Chamberlain N,Korwin-Mihavics BR,Nakada EM,Bruno SR,Heppner DE,Chapman DG,Hoffman SM,van der Vliet A,Suratt BT,Dienz O,Alcorn JF,Anathy V

    更新日期:2019-04-01 00:00:00