Oxidative stress during acetaminophen hepatotoxicity: Sources, pathophysiological role and therapeutic potential.

Abstract:

:Acetaminophen (APAP) hepatotoxicity is characterized by an extensive oxidative stress. However, its source, pathophysiological role and possible therapeutic potential if targeted, have been controversially described. Earlier studies argued for cytochrome P450-generated reactive oxygen species (ROS) during APAP metabolism, which resulted in massive lipid peroxidation and subsequent liver injury. However, subsequent studies convincingly challenged this assumption and the current paradigm suggests that mitochondria are the main source of ROS, which impair mitochondrial function and are responsible for cell signaling resulting in cell death. Although immune cells can be a source of ROS in other models, no reliable evidence exists to support a role for immune cell-derived ROS in APAP hepatotoxicity. Recent studies suggest that mitochondrial targeted antioxidants can be viable therapeutic agents against hepatotoxicity induced by APAP overdose, and re-purposing existing drugs to target oxidative stress and other concurrent signaling events can be a promising strategy to increase its potential application in patients with APAP overdose.

journal_name

Redox Biol

journal_title

Redox biology

authors

Du K,Ramachandran A,Jaeschke H

doi

10.1016/j.redox.2016.10.001

subject

Has Abstract

pub_date

2016-12-01 00:00:00

pages

148-156

issn

2213-2317

pii

S2213-2317(16)30173-2

journal_volume

10

pub_type

杂志文章,评审
  • L-dehydroascorbic acid can substitute l-ascorbic acid as dietary vitamin C source in guinea pigs.

    abstract::Vitamin C deficiency globally affects several hundred million people and has been associated with increased morbidity and mortality in numerous studies. In this study, bioavailability of the oxidized form of vitamin C (l-dehydroascorbic acid or DHA)-commonly found in vitamin C containing food products prone to oxidati...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2015.11.003

    authors: Frikke-Schmidt H,Tveden-Nyborg P,Lykkesfeldt J

    更新日期:2016-04-01 00:00:00

  • Synergistic antitumor activity of rapamycin and EF24 via increasing ROS for the treatment of gastric cancer.

    abstract::Mechanistic/mammalian target of rapamycin (mTOR) has emerged as a new potential therapeutic target for gastric cancer. Rapamycin and rapamycin analogs are undergoing clinical trials and have produced clinical responses in a subgroup of cancer patients. However, monotherapy with rapamycin at safe dosage fails to induce...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2016.09.006

    authors: Chen W,Zou P,Zhao Z,Chen X,Fan X,Vinothkumar R,Cui R,Wu F,Zhang Q,Liang G,Ji J

    更新日期:2016-12-01 00:00:00

  • A novel role for NUPR1 in the keratinocyte stress response to UV oxidized phospholipids.

    abstract::Ultraviolet light is the dominant environmental oxidative skin stressor and a major skin aging factor. We studied which oxidized phospholipid (OxPL) mediators would be generated in primary human keratinocytes (KC) upon exposure to ultraviolet A light (UVA) and investigated the contribution of OxPL to UVA responses. Ma...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.11.006

    authors: Narzt MS,Nagelreiter IM,Oskolkova O,Bochkov VN,Latreille J,Fedorova M,Ni Z,Sialana FJ,Lubec G,Filzwieser M,Laggner M,Bilban M,Mildner M,Tschachler E,Grillari J,Gruber F

    更新日期:2019-01-01 00:00:00

  • Endothelial nitric oxide synthase in red blood cells: key to a new erythrocrine function?

    abstract::Red blood cells (RBC) have been considered almost exclusively as a transporter of metabolic gases and nutrients for the tissues. It is an accepted dogma that RBCs take up and inactivate endothelium-derived NO via rapid reaction with oxyhemoglobin to form methemoglobin and nitrate, thereby limiting NO available for vas...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2013.12.027

    authors: Cortese-Krott MM,Kelm M

    更新日期:2014-01-09 00:00:00

  • Human aquaporin-11 guarantees efficient transport of H2O2 across the endoplasmic reticulum membrane.

    abstract::Hydrogen peroxide (H2O2) is an essential second intracellular messenger. To reach its targets in the cytosol, H2O2 must cross a membrane, a feat that requires aquaporins (AQP) endowed with 'peroxiporin' activity (AQP3, AQP8, AQP9). Here, we exploit different organelle-targeted H2O2-sensitive probes to show that also A...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101326

    authors: Bestetti S,Galli M,Sorrentino I,Pinton P,Rimessi A,Sitia R,Medraño-Fernandez I

    更新日期:2020-01-01 00:00:00

  • Mst1 deletion attenuates renal ischaemia-reperfusion injury: The role of microtubule cytoskeleton dynamics, mitochondrial fission and the GSK3β-p53 signalling pathway.

    abstract::Despite extensive research that has been carried out over the past three decades in the field of renal ischaemia-reperfusion (I/R) injury, the pathogenic role of mitochondrial fission in renal I/R injury is poorly understood. The aim of our study is to investigate the molecular mechanism by which mammalian STE20-like ...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.10.012

    authors: Li H,Feng J,Zhang Y,Feng J,Wang Q,Zhao S,Meng P,Li J

    更新日期:2019-01-01 00:00:00

  • The m6A reader YTHDC2 inhibits lung adenocarcinoma tumorigenesis by suppressing SLC7A11-dependent antioxidant function.

    abstract::The biological functions of N6-methyladenosine (m6A) RNA methylation are mainly dependent on the reader; however, its role in lung tumorigenesis remains unclear. Here, we have demonstrated that the m6A reader YT521-B homology domain containing 2 (YTHDC2) is frequently suppressed in lung adenocarcinoma (LUAD). Downregu...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101801

    authors: Ma L,Chen T,Zhang X,Miao Y,Tian X,Yu K,Xu X,Niu Y,Guo S,Zhang C,Qiu S,Qiao Y,Fang W,Du L,Yu Y,Wang J

    更新日期:2021-01-01 00:00:00

  • Strategies to decrease oxidative stress biomarker levels in human medical conditions: A meta-analysis on 8-iso-prostaglandin F2α.

    abstract::The widespread detection of elevated oxidative stress levels in many medical conditions has led to numerous efforts to design interventions to reduce its effects. Efforts have been wide-ranging, from dietary changes to administration of antioxidants, supplements, e.g., omega-3-fatty acids, and many medications. Howeve...

    journal_title:Redox biology

    pub_type: 杂志文章,meta分析

    doi:10.1016/j.redox.2018.05.003

    authors: van 't Erve TJ

    更新日期:2018-07-01 00:00:00

  • Evaluating The Role Of Nitric Oxide Synthase In Oncogenic Ras-Driven Tumorigenesis.

    abstract::We previously reported that oncogenic KRAS activation of the PI3K/AKT pathway stimulates the remaining wild-type HRAS and NRAS proteins in a manner dependent upon both eNOS expression and C118 in HRAS and NRAS, which promoted tumor growth. Interestingly however, we recently found that loss of wild-type HRAS, NRAS, and...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2015.09.023

    authors: Counter C

    更新日期:2015-08-01 00:00:00

  • Ribosomal protein L10 in mitochondria serves as a regulator for ROS level in pancreatic cancer cells.

    abstract::Tumorigenesis is commonly known as a complicated process, in which reactive oxygen species (ROS) plays a critical role to involve in signal transduction, metabolism, cell proliferation and differentiation. Previously, ribosomal protein L10 (RPL10) was suggested to possess extra-ribosomal functions in pancreatic cancer...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.08.016

    authors: Yang J,Chen Z,Liu N,Chen Y

    更新日期:2018-10-01 00:00:00

  • Mapping the phenotypic repertoire of the cytoplasmic 2-Cys peroxiredoxin - Thioredoxin system. 1. Understanding commonalities and differences among cell types.

    abstract::The system (PTTRS) formed by typical 2-Cys peroxiredoxins (Prx), thioredoxin (Trx), Trx reductase (TrxR), and sulfiredoxin (Srx) is central in antioxidant protection and redox signaling in the cytoplasm of eukaryotic cells. Understanding how the PTTRS integrates these functions requires tracing phenotypes to molecular...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.12.008

    authors: Selvaggio G,Coelho PMBM,Salvador A

    更新日期:2018-05-01 00:00:00

  • Age-related oxidative stress confines damage-responsive Bmi1+ cells to perivascular regions in the murine adult heart.

    abstract::Adult progenitor cells reside in specialized microenvironments which maintain their undifferentiated cell state and trigger regenerative responses following injury. Although these environments are well described in several tissues, the cellular components that comprise the cardiac environment where progenitor cells ar...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101156

    authors: Herrero D,Cañón S,Albericio G,Carmona RM,Aguilar S,Mañes S,Bernad A

    更新日期:2019-04-01 00:00:00

  • Curcuminoid B63 induces ROS-mediated paraptosis-like cell death by targeting TrxR1 in gastric cells.

    abstract::Gastric cancer is one of the leading causes of cancer-related deaths. Chemotherapy has improved long-term survival of patients with gastric cancer. Unfortunately, cancer readily develops resistance to apoptosis-inducing agents. New mechanisms, inducing caspase-independent paraptosis-like cell death in cancer cells is ...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.11.019

    authors: Chen X,Chen X,Zhang X,Wang L,Cao P,Rajamanickam V,Wu C,Zhou H,Cai Y,Liang G,Wang Y

    更新日期:2019-02-01 00:00:00

  • Activation leads to a significant shift in the intracellular redox homeostasis of neutrophil-like cells.

    abstract::Neutrophils produce a cocktail of oxidative species during the so-called oxidative burst to attack phagocytized bacteria. However, little is known about the neutrophils' redox homeostasis during the oxidative burst and there is currently no consensus about the interplay between oxidative species and cellular signaling...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101344

    authors: Xie K,Varatnitskaya M,Maghnouj A,Bader V,Winklhofer KF,Hahn S,Leichert LI

    更新日期:2020-01-01 00:00:00

  • Ozone inhalation modifies the rat liver proteome.

    abstract::Ozone (O3) is a serious public health concern. Recent findings indicate that the damaging health effects of O3 extend to multiple systemic organ systems. Herein, we hypothesize that O3 inhalation will cause downstream alterations to the liver. To test this, male Sprague-Dawley rats were exposed to 0.5ppm O3 for 8h/day...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2013.11.006

    authors: Theis WS,Andringa KK,Millender-Swain T,Dickinson DA,Postlethwait EM,Bailey SM

    更新日期:2014-01-01 00:00:00

  • Tumor cells have decreased ability to metabolize H2O2: Implications for pharmacological ascorbate in cancer therapy.

    abstract::Ascorbate (AscH-) functions as a versatile reducing agent. At pharmacological doses (P-AscH-; [plasma AscH-] ≥≈20mM), achievable through intravenous delivery, oxidation of P-AscH- can produce a high flux of H2O2 in tumors. Catalase is the major enzyme for detoxifying high concentrations of H2O2. We hypothesize that se...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2016.10.010

    authors: Doskey CM,Buranasudja V,Wagner BA,Wilkes JG,Du J,Cullen JJ,Buettner GR

    更新日期:2016-12-01 00:00:00

  • Artesunate-induced mitophagy alters cellular redox status.

    abstract::Artesunate (ART) is a prominent anti-malarial with significant anti-cancer properties. Our previous studies showed that ART enhances lysosomal function and ferritin degradation, which was necessary for its anti-cancer properties. ART targeting to mitochondria also significantly improved its efficacy, but the effect of...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.07.025

    authors: Zhang J,Sun X,Wang L,Wong YK,Lee YM,Zhou C,Wu G,Zhao T,Yang L,Lu L,Zhong J,Huang D,Wang J

    更新日期:2018-10-01 00:00:00

  • SIRT1 inhibition causes oxidative stress and inflammation in patients with coronary artery disease.

    abstract::Coronary artery disease (CAD) is the primary critical cardiovascular event. Endothelial cell and monocyte dysfunction with subsequent extravagant inflammation are the main causes of vessel damage in CAD. Thus, strategies that repress cell death and manage unsuitable pro-inflammatory responses in CAD are potential ther...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.05.027

    authors: Chan SH,Hung CH,Shih JY,Chu PM,Cheng YH,Lin HC,Tsai KL

    更新日期:2017-10-01 00:00:00

  • Mitochondrial dysfunction in Parkinsonian mesenchymal stem cells impairs differentiation.

    abstract::Sporadic cases account for 90-95% of all patients with Parkinson's Disease (PD). Atypical Parkinsonism comprises approximately 20% of all patients with parkinsonism. Progressive Supranuclear Palsy (PSP) belongs to the atypical parkinsonian diseases and is histopathologically classified as a tauopathy. Here, we report ...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.10.016

    authors: Angelova PR,Barilani M,Lovejoy C,Dossena M,Viganò M,Seresini A,Piga D,Gandhi S,Pezzoli G,Abramov AY,Lazzari L

    更新日期:2018-04-01 00:00:00

  • Loss of the ubiquitin conjugating enzyme UBE2E3 induces cellular senescence.

    abstract::Cellular senescence plays essential roles in tissue homeostasis as well as a host of diseases ranging from cancers to age-related neurodegeneration. Various molecular pathways can induce senescence and these different pathways dictate the phenotypic and metabolic changes that accompany the transition to, and maintenan...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.05.008

    authors: Plafker KS,Zyla K,Berry W,Plafker SM

    更新日期:2018-07-01 00:00:00

  • Glutaredoxin-2 controls cardiac mitochondrial dynamics and energetics in mice, and protects against human cardiac pathologies.

    abstract::Glutaredoxin 2 (GRX2), a mitochondrial glutathione-dependent oxidoreductase, is central to glutathione homeostasis and mitochondrial redox, which is crucial in highly metabolic tissues like the heart. Previous research showed that absence of Grx2, leads to impaired mitochondrial complex I function, hypertension and ca...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.10.019

    authors: Kanaan GN,Ichim B,Gharibeh L,Maharsy W,Patten DA,Xuan JY,Reunov A,Marshall P,Veinot J,Menzies K,Nemer M,Harper ME

    更新日期:2018-04-01 00:00:00

  • Advanced glycation end products and protein carbonyl levels in plasma reveal sex-specific differences in Parkinson's and Alzheimer's disease.

    abstract::Neurodegenerative diseases (NDD) such as Alzheimer's (AD) and Parkinson's disease (PD) are distinct clinical entities, however, the aggregation of key neuronal proteins, presumably leading to neuronal demise appears to represent a common mechanism. It has become evident, that advanced glycation end products (AGEs) tri...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101546

    authors: Sharma A,Weber D,Raupbach J,Dakal TC,Fließbach K,Ramirez A,Grune T,Wüllner U

    更新日期:2020-07-01 00:00:00

  • Critical role of vascular peroxidase 1 in regulating endothelial nitric oxide synthase.

    abstract::Vascular peroxidase 1 (VPO1) is a member of the peroxidase family which aggravates oxidative stress by producing hypochlorous acid (HOCl). Our previous study demonstrated that VPO1 plays a critical role in endothelial dysfunction through dimethylarginine dimethylaminohydrolase2 (DDAH2)/asymmetric Dimethylarginine (ADM...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.02.022

    authors: Liu Z,Liu Y,Xu Q,Peng H,Tang Y,Yang T,Yu Z,Cheng G,Zhang G,Shi R

    更新日期:2017-08-01 00:00:00

  • RITA plus 3-MA overcomes chemoresistance of head and neck cancer cells via dual inhibition of autophagy and antioxidant systems.

    abstract::Reactivation of p53 and induction of tumor cell apoptosis (RITA) is a small molecule that blocks p53-MDM2 interaction, thereby reactivating p53 in tumors. RITA can induce exclusive apoptosis in cancer cells independently of the p53 pathway; however, the resistance of cancer cells remains a major drawback. Here, we fou...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.05.025

    authors: Shin D,Kim EH,Lee J,Roh JL

    更新日期:2017-10-01 00:00:00

  • Curcumin blunts epithelial-mesenchymal transition of hepatocytes to alleviate hepatic fibrosis through regulating oxidative stress and autophagy.

    abstract::The massive production and activation of myofibroblasts (MFB) is key to the development of liver fibrosis. In many studies, it has been proven that hepatocytes are an important part of MFB, and can be transformed into MFB through epithelial-mesenchymal transition (EMT) during hepatic fibrogenesis. In our previous stud...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101600

    authors: Kong D,Zhang Z,Chen L,Huang W,Zhang F,Wang L,Wang Y,Cao P,Zheng S

    更新日期:2020-09-01 00:00:00

  • The dual role of poly(ADP-ribose) polymerase-1 in modulating parthanatos and autophagy under oxidative stress in rat cochlear marginal cells of the stria vascularis.

    abstract::Oxidative stress is reported to regulate several apoptotic and necrotic cell death pathways in auditory tissues. Poly(ADP-ribose) polymerase-1 (PARP-1) can be activated under oxidative stress, which is the hallmark of parthanatos. Autophagy, which serves either a pro-survival or pro-death function, can also be stimula...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.10.002

    authors: Jiang HY,Yang Y,Zhang YY,Xie Z,Zhao XY,Sun Y,Kong WJ

    更新日期:2018-04-01 00:00:00

  • Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis.

    abstract::Artesunate, an anti-malarial drug, has been repurposed as an anticancer drug due to its induction of cell death via reactive oxygen species (ROS) production. However, the molecular mechanisms regulating cancer cell death and the resistance of cells to artesunate remain unclear. We investigated the molecular mechanisms...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2016.12.010

    authors: Roh JL,Kim EH,Jang H,Shin D

    更新日期:2017-04-01 00:00:00

  • Comparative hepatoprotective effects of tocotrienol analogs against drug-induced liver injury.

    abstract::Oxidative stress plays a major part in the pathogenesis of drug-induced liver injury. Yet, overcoming it with other xenobiotics impose additional risks. In this study, we consider the use of natural-occurring and purified Vitamin E analogs as hepatoprotective agents. Vitamin E is well-known for its intrinsic antioxida...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2015.01.013

    authors: Tan CY,Saw TY,Fong CW,Ho HK

    更新日期:2015-01-01 00:00:00

  • FoxO6 inhibits melanogenesis partly by elevating intracellular antioxidant capacity.

    abstract::Of the various transcription factors that play a role in controlling oxidative stress, the role of FoxO proteins in skin aging has recently become of interest. Unlike other FoxOs, FoxO6 remains in the nucleus due to the lack of nuclear export signal, so that it may respond sensitively to intracellular stimuli for the ...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101624

    authors: Moon KM,Lee B,Kim DH,Chung HY

    更新日期:2020-09-01 00:00:00

  • Keap1 controls protein S-nitrosation and apoptosis-senescence switch in endothelial cells.

    abstract::Premature senescence, a death escaping pathway for cells experiencing stress, is conducive to aging and cardiovascular diseases. The molecular switch between senescent and apoptotic fate remains, however, poorly recognized. Nrf2 is an important transcription factor orchestrating adaptive response to cellular stress. H...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101304

    authors: Kopacz A,Klóska D,Proniewski B,Cysewski D,Personnic N,Piechota-Polańczyk A,Kaczara P,Zakrzewska A,Forman HJ,Dulak J,Józkowicz A,Grochot-Przęczek A

    更新日期:2020-01-01 00:00:00