Function and biochemical characterization of RecJ in Deinococcus radiodurans.

Abstract:

:The single-stranded DNA-specific nuclease RecJ is found in most bacteria where it is involved in the RecFOR double-stranded break (DSBs) repair pathway. DSBs repair mainly occurs via the RecFOR pathway in Deinococcus radiodurans, a well-known radiation-resistant bacterium. A recJ null mutant was constructed to investigate the role of recJ in D. radiodurans. recJ inactivation caused growth defects and sensitivity to high temperatures. However, the radiation resistance of the recJ mutant was only moderately decreased. The full-length D. radiodurans RecJ (DrRecJ) protein was expressed and purified to further characterize its biochemical properties. DrRecJ possessed a Mn(2+) concentration-dependent nuclease activity where the optimal Mn(2+) concentration was 0.1mM. DrRecJ had a similar activity profile after adding 10mM Mg(2+) to reactions with different Mn(2+) concentrations, indicating that Mn(2+) is a RecJ regulator. Escherichia coli RecJ has no activity on 5' ssDNA tails shorter than 6-nt, but DrRecJ could effectively degrade DNA with a 4-nt 5' ssDNA tail, suggesting that DrRecJ may have a wider range of DNA substrates. Moreover, SSB in D. radiodurans stimulated the DrRecJ exonuclease activity, whereas DdrB inhibited it and provided protection to ssDNA. Overall, our results indicate that recJ is a nonessential gene in D. radiodurans and that the activity of DrRecJ is regulated by Mn(2+) and SSB-DdrB.

journal_name

DNA Repair (Amst)

journal_title

DNA repair

authors

Jiao J,Wang L,Xia W,Li M,Sun H,Xu G,Tian B,Hua Y

doi

10.1016/j.dnarep.2011.11.008

subject

Has Abstract

pub_date

2012-04-01 00:00:00

pages

349-56

issue

4

eissn

1568-7864

issn

1568-7856

pii

S1568-7864(11)00375-2

journal_volume

11

pub_type

杂志文章
  • DNA damage response and breast cancer development: Possible therapeutic applications of ATR, ATM, PARP, BRCA1 inhibition.

    abstract::Breast cancer is the most common and significant cancers in females regarding the loss of life quality. Similar to other cancers, one of the etiologic factors in breast cancer is DNA damage. A plethora of molecules are responsible for sensing DNA damage and mediating actions which lead to DNA repair, senescence, cell ...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2020.103032

    authors: Mirza-Aghazadeh-Attari M,Recio MJ,Darband SG,Kaviani M,Safa A,Mihanfar A,Sadighparvar S,Karimian A,Alemi F,Majidinia M,Yousefi B

    更新日期:2020-12-17 00:00:00

  • Two budding yeast RAD4 homologs in fission yeast play different roles in the repair of UV-induced DNA damage.

    abstract::We have identified two fission yeast homologs of budding yeast Rad4 and human xeroderma pigmentosum complementation group C (XP-C) correcting protein, designated Rhp4A and Rhp4B. Here we show that the rhp4 genes encode NER factors that are required for UV-induced DNA damage repair in fission yeast. The rhp4A-deficient...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/s1568-7864(02)00108-8

    authors: Fukumoto Y,Hiyama H,Yokoi M,Nakaseko Y,Yanagida M,Hanaoka F

    更新日期:2002-10-01 00:00:00

  • Kinetic analysis of DNA double-strand break repair pathways in Arabidopsis.

    abstract::Double-strand breaks in genomic DNA (DSB) are potentially lethal lesions which separate parts of chromosome arms from their centromeres. Repair of DSB by recombination can generate mutations and further chromosomal rearrangements, making the regulation of recombination and the choice of recombination pathways of the h...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2011.04.002

    authors: Charbonnel C,Allain E,Gallego ME,White CI

    更新日期:2011-06-10 00:00:00

  • RNA-directed repair of DNA double-strand breaks.

    abstract::DNA double-strand breaks (DSBs) are among the most deleterious DNA lesions, which if unrepaired or repaired incorrectly can cause cell death or genome instability that may lead to cancer. To counteract these adverse consequences, eukaryotes have evolved a highly orchestrated mechanism to repair DSBs, namely DNA-damage...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2015.04.017

    authors: Yang YG,Qi Y

    更新日期:2015-08-01 00:00:00

  • The endonuclease domain of Bacillus subtilis MutL is functionally asymmetric.

    abstract::DNA mismatch repair is an evolutionarily conserved repair pathway that corrects replication errors. In most prokaryotes and all eukaryotes, the mismatch repair protein MutL is a sequence-unspecific endonuclease that nicks the newly synthesized strand and marks it for repair. Although the sequence of the endonuclease d...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2018.10.003

    authors: Liu L,Ortiz Castro MC,Rodríguez González J,Pillon MC,Guarné A

    更新日期:2019-01-01 00:00:00

  • Dormant origins as a built-in safeguard in eukaryotic DNA replication against genome instability and disease development.

    abstract::DNA replication is a prerequisite for cell proliferation, yet it can be increasingly challenging for a eukaryotic cell to faithfully duplicate its genome as its size and complexity expands. Dormant origins now emerge as a key component for cells to successfully accomplish such a demanding but essential task. In this p...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2017.06.019

    authors: Shima N,Pederson KD

    更新日期:2017-08-01 00:00:00

  • Nucleolytic processing of a protein-bound DNA end by the E. coli SbcCD (MR) complex.

    abstract::SbcCD and other Mre11/Rad50 (MR) complexes are implicated in the metabolism of DNA ends. They cleave ends sealed by hairpin structures and have been postulated to play roles in removing protein bound to DNA termini. Here we provide direct evidence that the Escherichia coli MR complex (SbcCD) removes protein from a pro...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/s1568-7864(03)00063-6

    authors: Connelly JC,de Leau ES,Leach DR

    更新日期:2003-07-16 00:00:00

  • Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae.

    abstract::Pyridine nucleotides are essential coenzymes in many cellular redox reactions in all living systems. In addition to functioning as a redox carrier, NAD(+) is also a required co-substrate for the conserved sirtuin deacetylases. Sirtuins regulate transcription, genome maintenance and metabolism and function as molecular...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2014.07.009

    authors: Kato M,Lin SJ

    更新日期:2014-11-01 00:00:00

  • Base excision repair and nucleotide excision repair contribute to the removal of N-methylpurines from active genes.

    abstract::Many different cellular pathways have evolved to protect the genome from the deleterious effects of DNA damage that result from exposure to chemical and physical agents. Among these is a process called transcription-coupled repair (TCR) that catalyzes the removal of DNA lesions from the transcribed strand of expressed...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/s1568-7864(02)00075-7

    authors: Plosky B,Samson L,Engelward BP,Gold B,Schlaen B,Millas T,Magnotti M,Schor J,Scicchitano DA

    更新日期:2002-08-06 00:00:00

  • Poetry in motion: Increased chromosomal mobility after DNA damage.

    abstract::Double-strand breaks (DSBs) are among the most lethal DNA lesions, and a variety of pathways have evolved to manage their repair in a timely fashion. One such pathway is homologous recombination (HR), in which information from an undamaged donor site is used as a template for repair. Although many of the biochemical s...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2017.06.012

    authors: Smith MJ,Rothstein R

    更新日期:2017-08-01 00:00:00

  • Is RecG a general guardian of the bacterial genome?

    abstract::The RecG protein of Escherichia coli is a double-stranded DNA translocase that unwinds a variety of branched DNAs in vitro, including Holliday junctions, replication forks, D-loops and R-loops. Coupled with the reported pleiotropy of recG mutations, this broad range of potential targets has made it hard to pin down wh...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2009.12.014

    authors: Rudolph CJ,Upton AL,Briggs GS,Lloyd RG

    更新日期:2010-03-02 00:00:00

  • The splicing component ISY1 regulates APE1 in base excision repair.

    abstract::The integrity of cellular genome is continuously challenged by endogenous and exogenous DNA damaging agents. If DNA damage is not removed in a timely fashion the replisome may stall at DNA lesions, causing fork collapse and genetic instability. Base excision DNA repair (BER) is the most important pathway for the remov...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2019.102769

    authors: Jaiswal AS,Williamson EA,Srinivasan G,Kong K,Lomelino CL,McKenna R,Walter C,Sung P,Narayan S,Hromas R

    更新日期:2020-02-01 00:00:00

  • REV1 mediated mutagenesis in base excision repair deficient mouse fibroblast.

    abstract::The DNA polymerase beta (Pol beta) null background renders mouse embryonic fibroblast (MEF) cells base excision repair deficient and hyper-mutagenic upon treatment with the monofunctional alkylating agent, methyl methanesulfonate (MMS). This effect involves an increase in all types of base substitutions, with a modest...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2005.05.002

    authors: Poltoratsky V,Horton JK,Prasad R,Wilson SH

    更新日期:2005-09-28 00:00:00

  • Human OGG1 activity in nucleosomes is facilitated by transient unwrapping of DNA and is influenced by the local histone environment.

    abstract::If unrepaired, damage to genomic DNA can cause mutations and/or be cytotoxic. Single base lesions are repaired via the base excision repair (BER) pathway. The first step in BER is the recognition and removal of the nucleobase lesion by a glycosylase enzyme. For example, human oxoguanine glycosylase 1 (hOGG1) is respon...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2017.08.010

    authors: Bilotti K,Kennedy EE,Li C,Delaney S

    更新日期:2017-11-01 00:00:00

  • Claspin, a regulator of Chk1 in DNA replication stress pathway.

    abstract::Regulation of the vertebrate checkpoint kinase Chk1 involves several protein complexes including the recently identified protein Claspin. Claspin associates with Chk1 upon replication stress and DNA damage and is required for Chk1 activation in both Xenopus and human systems. More importantly, Claspin is involved in r...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2004.03.001

    authors: Chini CC,Chen J

    更新日期:2004-08-01 00:00:00

  • Mismatch repair-independent tandem repeat sequence instability resulting from ribonucleotide incorporation by DNA polymerase ε.

    abstract::During DNA synthesis in vitro using dNTP and rNTP concentrations present in vivo, yeast replicative DNA polymerases α, δ and ɛ (Pols α, δ and ɛ) stably incorporate rNTPs into DNA. rNTPs are also incorporated during replication in vivo, and they are repaired in an RNase H2-dependent manner. In strains encoding a mutato...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2011.02.001

    authors: Clark AB,Lujan SA,Kissling GE,Kunkel TA

    更新日期:2011-05-05 00:00:00

  • The nature of DNA plays a role in chromosome segregation: endoreduplication in halogen-substituted chromosomes.

    abstract::AA8 Chinese hamster ovary cells were treated with halogenated nucleosides analogues of thymidine, namely CldU, 5-iodo-2'-deoxyuridine (IdU), and 5-bromo-2'-deoxyuridine (BrdU), following different experimental protocols. The purpose was to see whether incorporation of exogenous pyrimidine analogues into DNA could inte...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/s1568-7864(03)00044-2

    authors: Cortés F,Pastor N,Mateos S,Domínguez I

    更新日期:2003-06-11 00:00:00

  • Dual DNA-binding domains shape the interaction of Brh2 with DNA.

    abstract::Brh2, the BRCA2 ortholog in the fungus Ustilago maydis, harbors two different DNA-binding domains, one located in the N-terminal region and the other located in the C-terminal region. Here we were interested in comparing the biochemical properties of Brh2 fragments, Brh2(NT) and Brh2(CT), respectively, harboring the t...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2014.07.013

    authors: Zhou Q,Holloman WK

    更新日期:2014-10-01 00:00:00

  • Mismatch repair protein Msh2 contributes to UVB-induced cell cycle arrest in epidermal and cultured mouse keratinocytes.

    abstract::Nucleotide excision repair (NER), cell cycle regulation and apoptosis are major defence mechanisms against the carcinogenic effects of UVB radiation. NER eliminates UVB-induced DNA photolesions via two subpathways: global genome repair (GGR) and transcription-coupled repair (TCR). In a previous study, we found UVB-ind...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2004.08.008

    authors: van Oosten M,Stout GJ,Backendorf C,Rebel H,de Wind N,Darroudi F,van Kranen HJ,de Gruijl FR,Mullenders LH

    更新日期:2005-01-02 00:00:00

  • Interaction of apurinic/apyrimidinic endonuclease 2 (Apn2) with Myh1 DNA glycosylase in fission yeast.

    abstract::Oxidative DNA damage is repaired primarily by the base excision repair (BER) pathway in a process initiated by removal of base lesions or mismatched bases by DNA glycosylases. MutY homolog (MYH, MUTYH, or Myh1) is a DNA glycosylase which excises adenine paired with the oxidative lesion 8-oxo-7,8-dihydroguanine (8-oxoG...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2014.01.001

    authors: Jin J,Hwang BJ,Chang PW,Toth EA,Lu AL

    更新日期:2014-03-01 00:00:00

  • Analysis of mutational signatures in C. elegans: Implications for cancer genome analysis.

    abstract::Genome integrity is constantly challenged by exogenous and endogenous insults, and mutations are associated with inherited disease and cancer. Here we summarize recent studies that utilized C. elegans whole genome next generation sequencing to experimentally determine mutational signatures associated with mutagen expo...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2020.102957

    authors: Meier B,Volkova NV,Gerstung M,Gartner A

    更新日期:2020-11-01 00:00:00

  • The Rad5 helicase activity is dispensable for error-free DNA post-replication repair.

    abstract::DNA post-replication repair (PRR) functions to bypass replication-blocking lesions and is subdivided into two parallel pathways: error-prone translesion DNA synthesis and error-free PRR. While both pathways are dependent on the ubiquitination of PCNA, error-free PRR utilizes noncanonical K63-linked polyubiquitinated P...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2014.02.016

    authors: Ball LG,Xu X,Blackwell S,Hanna MD,Lambrecht AD,Xiao W

    更新日期:2014-04-01 00:00:00

  • Ultra-violet light induced changes in DNA dynamics may enhance TT-dimer recognition.

    abstract::Short-wave ultra-violet light promotes the formation of DNA dimers between adjacent thymine bases, and if unrepaired these dimers may induce skin cancer. Living cells have a very robust repair system capable of repairing hundreds of lesions every day. Although many of the details of the dimer repair mechanism are know...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2006.04.007

    authors: Blagoev KB,Alexandrov BS,Goodwin EH,Bishop AR

    更新日期:2006-07-13 00:00:00

  • Homologous recombination and the yKu70/80 complex exert opposite roles in resistance against the killer toxin from Pichia acaciae.

    abstract::The linear plasmid (pPac1-2) encoded killer toxin (PaT) of the yeast Pichia acaciae arrests sensitive Saccharomyces cerevisiae cells in the S-phase of the cell cycle and induces mutations. Here we provide evidence for opposite effects in PaT resistance of homologous recombination (HR) and non-homologous end joining (N...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2007.07.010

    authors: Klassen R,Krampe S,Meinhardt F

    更新日期:2007-12-01 00:00:00

  • The oxidized pyrimidine ribonucleotide, 5-hydroxy-CTP, is hydrolyzed efficiently by the Escherichia coli recombinant Orf135 protein.

    abstract::The Escherichia coli orf135 gene encodes a 15.4kDa protein with homology to the MutT family of nucleotide hydrolases. The orf135 gene was cloned within a glutathione S-transferase (GST) fusion protein expression vector, which was used to overproduce the GST-Orf135 fusion protein in E. coli. The fusion protein thus obt...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/s1568-7864(02)00057-5

    authors: Fujikawa K,Kasai H

    更新日期:2002-07-17 00:00:00

  • Protein ADP-ribosylation and the cellular response to DNA strand breaks.

    abstract::DNA strand breaks arise continuously in cells and can lead to chromosome rearrangements and genome instability or cell death. The commonest DNA breaks are DNA single-strand breaks, which arise at a frequency of tens-of-thousands per cell each day and which can block the progression of RNA/DNA polymerases and disrupt g...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2014.03.021

    authors: Caldecott KW

    更新日期:2014-07-01 00:00:00

  • CtIP: A DNA damage response protein at the intersection of DNA metabolism.

    abstract::The mammalian CtIP protein and its orthologs in other eukaryotes promote the resection of DNA double-strand breaks and are essential for meiotic recombination. Here we review the current literature supporting the role of CtIP in DNA end processing and the importance of CtIP endonuclease activity in DNA repair. We also...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2015.04.016

    authors: Makharashvili N,Paull TT

    更新日期:2015-08-01 00:00:00

  • Replication stalling and heteroduplex formation within CAG/CTG trinucleotide repeats by mismatch repair.

    abstract::Trinucleotide repeat expansions are responsible for at least two dozen neurological disorders. Mechanisms leading to these large expansions of repeated DNA are still poorly understood. It was proposed that transient stalling of the replication fork by the repeat tract might trigger slippage of the newly-synthesized st...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2016.03.002

    authors: Viterbo D,Michoud G,Mosbach V,Dujon B,Richard GF

    更新日期:2016-06-01 00:00:00

  • Overexpression of Rad51 inhibits double-strand break-induced homologous recombination but does not affect gene conversion tract lengths.

    abstract::DNA double-strand breaks (DSBs) in yeast are repaired by homologous recombination (HR) and non-homologous end-joining (NHEJ). Rad51 forms nucleoprotein filaments at processed broken ends that effect strand exchange, forming heteroduplex DNA (hDNA) that gives rise to a gene conversion tract. We hypothesized that excess...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2005.03.003

    authors: Paffett KS,Clikeman JA,Palmer S,Nickoloff JA

    更新日期:2005-06-08 00:00:00

  • Ataxia-telangiectasia-like disorder (ATLD)-its clinical presentation and molecular basis.

    abstract::Comparison of the clinical and cellular phenotypes of different genomic instability syndromes provides new insights into functional links in the complex network of the DNA damage response. A prominent example of this principle is provided by examination of three such disorders: ataxia-telangiectasia (A-T) caused by la...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2004.04.009

    authors: Taylor AM,Groom A,Byrd PJ

    更新日期:2004-08-01 00:00:00