Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle.

Abstract:

:Skeletal and cardiac muscle depend on high turnover of ATP made by mitochondria in order to contract efficiently. The transcriptional coactivator PGC-1alpha has been shown to function as a major regulator of mitochondrial biogenesis and respiration in both skeletal and cardiac muscle, but this has been based only on gain-of-function studies. Using genetic knockout mice, we show here that, while PGC-1alpha KO mice appear to retain normal mitochondrial volume in both muscle beds, expression of genes of oxidative phosphorylation is markedly blunted. Hearts from these mice have reduced mitochondrial enzymatic activities and decreased levels of ATP. Importantly, isolated hearts lacking PGC-1alpha have a diminished ability to increase work output in response to chemical or electrical stimulation. As mice lacking PGC-1alpha age, cardiac dysfunction becomes evident in vivo. These data indicate that PGC-1alpha is vital for the heart to meet increased demands for ATP and work in response to physiological stimuli.

journal_name

Cell Metab

journal_title

Cell metabolism

authors

Arany Z,He H,Lin J,Hoyer K,Handschin C,Toka O,Ahmad F,Matsui T,Chin S,Wu PH,Rybkin II,Shelton JM,Manieri M,Cinti S,Schoen FJ,Bassel-Duby R,Rosenzweig A,Ingwall JS,Spiegelman BM

doi

10.1016/j.cmet.2005.03.002

keywords:

subject

Has Abstract

pub_date

2005-04-01 00:00:00

pages

259-71

issue

4

eissn

1550-4131

issn

1932-7420

pii

S1550-4131(05)00081-1

journal_volume

1

pub_type

杂志文章
  • Silencing of lipid metabolism genes through IRE1α-mediated mRNA decay lowers plasma lipids in mice.

    abstract::XBP1 is a key regulator of the unfolded protein response (UPR), which is involved in a wide range of physiological and pathological processes. XBP1 ablation in liver causes profound hypolipidemia in mice, highlighting its critical role in lipid metabolism. XBP1 deficiency triggers feedback activation of its upstream e...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2012.09.004

    authors: So JS,Hur KY,Tarrio M,Ruda V,Frank-Kamenetsky M,Fitzgerald K,Koteliansky V,Lichtman AH,Iwawaki T,Glimcher LH,Lee AH

    更新日期:2012-10-03 00:00:00

  • The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis.

    abstract::Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are major phospholipids in mammalian membranes. In liver, PC is synthesized via the choline pathway or by methylation of PE via phosphatidylethanolamine N-methyltransferase (PEMT). Pemt(-/-) mice fed a choline-deficient (CD) diet develop rapid steatohepatitis ...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2006.03.007

    authors: Li Z,Agellon LB,Allen TM,Umeda M,Jewell L,Mason A,Vance DE

    更新日期:2006-05-01 00:00:00

  • Wip1-dependent regulation of autophagy, obesity, and atherosclerosis.

    abstract::Obesity and atherosclerosis-related diseases account for over one-third of deaths in the western world. Controlling these conditions remains a major challenge due to an incomplete understanding of the molecular pathways involved. Here, we show that Wip1 phosphatase, a known negative regulator of Atm-dependent signalin...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2012.06.003

    authors: Le Guezennec X,Brichkina A,Huang YF,Kostromina E,Han W,Bulavin DV

    更新日期:2012-07-03 00:00:00

  • Branching out for detection of type 2 diabetes.

    abstract::Type 2 diabetes is an epidemic disease worldwide, but it is difficult to predict its appearance in the general population. A recent study demonstrates that circulating concentrations of a small group of essential amino acids predict risk for diabetes, contributing to a recent resurgence of interest in these common ana...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2011.04.003

    authors: Shah SH,Svetkey LP,Newgard CB

    更新日期:2011-05-04 00:00:00

  • The hypoxia-inducible microRNA cluster miR-199a∼214 targets myocardial PPARδ and impairs mitochondrial fatty acid oxidation.

    abstract::Peroxisome proliferator-activated receptor δ (PPARδ) is a critical regulator of energy metabolism in the heart. Here, we propose a mechanism that integrates two deleterious characteristics of heart failure, hypoxia and a metabolic shift toward glycolysis, involving the microRNA cluster miR-199a∼214 and PPARδ. We demon...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2013.08.009

    authors: el Azzouzi H,Leptidis S,Dirkx E,Hoeks J,van Bree B,Brand K,McClellan EA,Poels E,Sluimer JC,van den Hoogenhof MM,Armand AS,Yin X,Langley S,Bourajjaj M,Olieslagers S,Krishnan J,Vooijs M,Kurihara H,Stubbs A,Pinto YM,

    更新日期:2013-09-03 00:00:00

  • Interleukin-6 signaling in liver-parenchymal cells suppresses hepatic inflammation and improves systemic insulin action.

    abstract::The contribution of interleukin (IL)-6 signaling in obesity-induced inflammation remains controversial. To specifically define the role of hepatic IL-6 signaling in insulin action and resistance, we have generated mice with hepatocyte-specific IL-6 receptor (IL-6R) alpha deficiency (IL-6Ralpha(L-KO) mice). These anima...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2010.06.011

    authors: Wunderlich FT,Ströhle P,Könner AC,Gruber S,Tovar S,Brönneke HS,Juntti-Berggren L,Li LS,van Rooijen N,Libert C,Berggren PO,Brüning JC

    更新日期:2010-09-08 00:00:00

  • Bone remodeling, energy metabolism, and the molecular clock.

    abstract::The adult skeleton is constantly renewed through bone remodeling. Four recent papers (Baldock et al., 2007; Lee et al., 2007; Lundberg et al., 2007; Sato et al., 2007) provide new insights into central and peripheral control of this remodeling sequence. Two of the studies add to our knowledge of the complex hypothalam...

    journal_title:Cell metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.cmet.2007.12.004

    authors: Rosen CJ

    更新日期:2008-01-01 00:00:00

  • Knock, knock to reset the clock: mechanosensation and circadian rhythms.

    abstract::Circadian clocks, which underlie the daily rhythms in virtually all organisms, are entrained by diurnal changes in light, temperature, nutrients, and even sound. Simoni et al. (2014) demonstrate that diurnal variation in mechanical vibrations can reset circadian clock phase, providing a potential mechanism for integra...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2014.04.011

    authors: van Alphen B,Allada R

    更新日期:2014-05-06 00:00:00

  • Conserved metabolic regulatory functions of sirtuins.

    abstract::Silent information regulator 2 (Sir2) proteins, or sirtuins, are protein deacetylases/mono-ADP-ribosyltransferases found in organisms ranging from bacteria to humans. Their dependence on nicotinamide adenine dinucleotide (NAD+) links their activity to cellular metabolic status. In bacteria, the sirtuin CobB regulates ...

    journal_title:Cell metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.cmet.2007.11.006

    authors: Schwer B,Verdin E

    更新日期:2008-02-01 00:00:00

  • IGF2BP2/IMP2-Deficient mice resist obesity through enhanced translation of Ucp1 mRNA and Other mRNAs encoding mitochondrial proteins.

    abstract::Although variants in the IGF2BP2/IMP2 gene confer risk for type 2 diabetes, IMP2, an RNA binding protein, is not known to regulate metabolism. Imp2(-/-) mice gain less lean mass after weaning and have increased lifespan. Imp2(-/-) mice are highly resistant to diet-induced obesity and fatty liver and display superior g...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2015.03.006

    authors: Dai N,Zhao L,Wrighting D,Krämer D,Majithia A,Wang Y,Cracan V,Borges-Rivera D,Mootha VK,Nahrendorf M,Thorburn DR,Minichiello L,Altshuler D,Avruch J

    更新日期:2015-04-07 00:00:00

  • Weight Gain and Impaired Glucose Metabolism in Women Are Predicted by Inefficient Subcutaneous Fat Cell Lipolysis.

    abstract::Adipocyte mobilization of fatty acids (lipolysis) is instrumental for energy expenditure. Lipolysis displays both spontaneous (basal) and hormone-stimulated activity. It is unknown if lipolysis is important for future body weight gain and associated disturbed glucose metabolism, and this was presently investigated in ...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2018.05.004

    authors: Arner P,Andersson DP,Bäckdahl J,Dahlman I,Rydén M

    更新日期:2018-07-03 00:00:00

  • Inflammation-induced alteration of astrocyte mitochondrial dynamics requires autophagy for mitochondrial network maintenance.

    abstract::Accumulating evidence suggests that changes in the metabolic signature of astrocytes underlie their response to neuroinflammation, but how proinflammatory stimuli induce these changes is poorly understood. By monitoring astrocytes following acute cortical injury, we identified a differential and region-specific remode...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2013.11.005

    authors: Motori E,Puyal J,Toni N,Ghanem A,Angeloni C,Malaguti M,Cantelli-Forti G,Berninger B,Conzelmann KK,Götz M,Winklhofer KF,Hrelia S,Bergami M

    更新日期:2013-12-03 00:00:00

  • BBS-induced ciliary defect enhances adipogenesis, causing paradoxical higher-insulin sensitivity, glucose usage, and decreased inflammatory response.

    abstract::Studying ciliopathies, like the Bardet-Biedl syndrome (BBS), allow the identification of signaling pathways potentially involved in common diseases, sharing phenotypic features like obesity or type 2 diabetes. Given the close association between obesity and insulin resistance, obese BBS patients would be expected to b...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2012.08.005

    authors: Marion V,Mockel A,De Melo C,Obringer C,Claussmann A,Simon A,Messaddeq N,Durand M,Dupuis L,Loeffler JP,King P,Mutter-Schmidt C,Petrovsky N,Stoetzel C,Dollfus H

    更新日期:2012-09-05 00:00:00

  • Dynamics of an Aging Genome.

    abstract::The genetic mechanisms mediating longevity and maximum lifespan of the human species are likely different than those explaining differences in life expectancy and healthspan across individuals. Both of these perspectives are important and can be separated and explored using genomic data. ...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2016.06.002

    authors: Telenti A,Perkins BA,Venter JC

    更新日期:2016-06-14 00:00:00

  • Mitochondrial phosphatase PTPMT1 is essential for cardiolipin biosynthesis.

    abstract::PTPMT1 was the first protein tyrosine phosphatase found localized to the mitochondria, but its biological function was unknown. Herein, we demonstrate that whole body deletion of Ptpmt1 in mice leads to embryonic lethality, suggesting an indispensable role for PTPMT1 during development. Ptpmt1 deficiency in mouse embr...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2011.04.007

    authors: Zhang J,Guan Z,Murphy AN,Wiley SE,Perkins GA,Worby CA,Engel JL,Heacock P,Nguyen OK,Wang JH,Raetz CR,Dowhan W,Dixon JE

    更新日期:2011-06-08 00:00:00

  • Iron and diabetes risk.

    abstract::Iron overload is a risk factor for diabetes. The link between iron and diabetes was first recognized in pathologic conditions-hereditary hemochromatosis and thalassemia-but high levels of dietary iron also impart diabetes risk. Iron plays a direct and causal role in diabetes pathogenesis mediated both by β cell failur...

    journal_title:Cell metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.cmet.2013.02.007

    authors: Simcox JA,McClain DA

    更新日期:2013-03-05 00:00:00

  • Microglia Metabolic Breakdown Drives Alzheimer's Pathology.

    abstract::Altered metabolic function is common in stressed immune cells, but alteration in brain microglia during neurodegeneration is not understood. In this issue, Baik et al. (2019) provide insight into microglial metabolism. They demonstrate a switch from oxidative phosphorylation to glycolysis following interaction with am...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2019.08.017

    authors: Bennett FC,Liddelow SA

    更新日期:2019-09-03 00:00:00

  • Ryanodine receptor oxidation causes intracellular calcium leak and muscle weakness in aging.

    abstract::Age-related loss of muscle mass and force (sarcopenia) contributes to disability and increased mortality. Ryanodine receptor 1 (RyR1) is the skeletal muscle sarcoplasmic reticulum calcium release channel required for muscle contraction. RyR1 from aged (24 months) rodents was oxidized, cysteine-nitrosylated, and deplet...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2011.05.014

    authors: Andersson DC,Betzenhauser MJ,Reiken S,Meli AC,Umanskaya A,Xie W,Shiomi T,Zalk R,Lacampagne A,Marks AR

    更新日期:2011-08-03 00:00:00

  • Macrofinancing efficient remodeling of damaged muscle tissue.

    abstract::In this issue of Cell Metabolism, Mounier et al. (2013) show that AMPKα1 is a crucial contributor to the regeneration of damaged muscle tissues, acting in macrophages at the nexus between proinflammatory debris removal and resolution of muscle tissue inflammation. ...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2013.07.011

    authors: Krishnan V,Yaden BC

    更新日期:2013-08-06 00:00:00

  • Mitochondrial medicine: a metabolic perspective on the pathology of oxidative phosphorylation disorders.

    abstract::The final steps in the production of adenosine triphosphate (ATP) in mitochondria are executed by a series of multisubunit complexes and electron carriers, which together constitute the oxidative phosphorylation (OXPHOS) system. OXPHOS is under dual genetic control, with communication between the nuclear and mitochond...

    journal_title:Cell metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.cmet.2005.12.001

    authors: Smeitink JA,Zeviani M,Turnbull DM,Jacobs HT

    更新日期:2006-01-01 00:00:00

  • Dysfunctional families: Clostridium scindens and secondary bile acids inhibit the growth of Clostridium difficile.

    abstract::C. difficile infection is a deadly disease that is influenced by the microbiome. In a recent article in Nature, Buffie et al. (2014) demonstrate that the ability of C. scindens to synthesize secondary bile acids is crucial to providing resistance to C. difficile infection. ...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2014.12.016

    authors: Greathouse KL,Harris CC,Bultman SJ

    更新日期:2015-01-06 00:00:00

  • Metformin action: concentrations matter.

    abstract::Metformin has been used for nearly a century and is now the most widely prescribed oral anti-diabetic agent worldwide. Yet how metformin acts remains only partially understood and controversial. One key reason may be that almost all previous studies were conducted with supra-pharmacological concentrations (doses) of m...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2015.01.003

    authors: He L,Wondisford FE

    更新日期:2015-02-03 00:00:00

  • Causal Link between n-3 Polyunsaturated Fatty Acid Deficiency and Motivation Deficits.

    abstract::Reward-processing impairment is a common symptomatic dimension of several psychiatric disorders. However, whether the underlying pathological mechanisms are common is unknown. Herein, we asked if the decrease in the n-3 polyunsaturated fatty acid (PUFA) lipid species, consistently described in these pathologies, could...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2020.02.012

    authors: Ducrocq F,Walle R,Contini A,Oummadi A,Caraballo B,van der Veldt S,Boyer ML,Aby F,Tolentino-Cortez T,Helbling JC,Martine L,Grégoire S,Cabaret S,Vancassel S,Layé S,Kang JX,Fioramonti X,Berdeaux O,Barreda-Gómez G,Masso

    更新日期:2020-04-07 00:00:00

  • Nucleocytosolic depletion of the energy metabolite acetyl-coenzyme a stimulates autophagy and prolongs lifespan.

    abstract::Healthy aging depends on removal of damaged cellular material that is in part mediated by autophagy. The nutritional status of cells affects both aging and autophagy through as-yet-elusive metabolic circuitries. Here, we show that nucleocytosolic acetyl-coenzyme A (AcCoA) production is a metabolic repressor of autopha...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2014.02.010

    authors: Eisenberg T,Schroeder S,Andryushkova A,Pendl T,Küttner V,Bhukel A,Mariño G,Pietrocola F,Harger A,Zimmermann A,Moustafa T,Sprenger A,Jany E,Büttner S,Carmona-Gutierrez D,Ruckenstuhl C,Ring J,Reichelt W,Schimmel K,Lee

    更新日期:2014-03-04 00:00:00

  • Cannabinoids provoke alcoholic steatosis through a conspiracy of neighbors.

    abstract::Cannabinoid signaling by CB1 receptors drives fibrogenesis and fat accumulation in liver. A report in this issue of Cell Metabolism (Jeong et al., 2008) now links hepatic stellate cells, a resident liver fibrogenic cell type, to the generation of steatosis through production of the endocannabinoid 2-arachidonoylglycer...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2008.02.002

    authors: Friedman SL,Nieto N

    更新日期:2008-03-01 00:00:00

  • From the Transcriptome to Electrophysiology: Searching for the Underlying Cause of Diabetes.

    abstract::Cells within the islet of Langerhans are heterogeneous. Camunas-Soler et al. (2020) implement a patch-seq technique to collect both transcriptomic and electrophysiological data from the same cell. By doing so, they discover new genes that correlate with functional heterogeneity and find that shifts in these correlatio...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2020.04.012

    authors: Kravets V,Benninger RKP

    更新日期:2020-05-05 00:00:00

  • Lipid Metabolism Gets in a JAML during Kidney Disease.

    abstract::It is still unclear if the ability of key regulators of actin cytoskeletal remodeling to influence lipid metabolism contributes to kidney injury. In this issue of Cell Metabolism, Fu et al. (2020) show that junctional adhesion molecule-like (JAML) is a novel mediator of glomerular disease progression while suggesting ...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2020.11.002

    authors: Fornoni A,Merscher S

    更新日期:2020-12-01 00:00:00

  • Beyond Hit-and-Run: Stem Cells Leave a Lasting Memory.

    abstract::While mesenchymal stem cells (MSCs) are rapidly cleared from the body following systemic transplantation, their therapeutic benefits typically persist. In this issue, Liu et al. (2015) reveal that the ability of transplanted MSCs to alleviate osteoporosis in systemic lupus erythematosus is maintained through epigeneti...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2015.09.019

    authors: Ng KS,Kuncewicz TM,Karp JM

    更新日期:2015-10-06 00:00:00

  • The IRE1alpha-XBP1 pathway of the unfolded protein response is required for adipogenesis.

    abstract::Signaling cascades during adipogenesis culminate in the expression of two essential adipogenic factors, PPARgamma and C/EBPalpha. Here we demonstrate that the IRE1alpha-XBP1 pathway, the most conserved branch of the unfolded protein response (UPR), is indispensable for adipogenesis. Indeed, XBP1-deficient mouse embryo...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2009.04.009

    authors: Sha H,He Y,Chen H,Wang C,Zenno A,Shi H,Yang X,Zhang X,Qi L

    更新日期:2009-06-01 00:00:00

  • Resistance to high-fat diet-induced obesity and insulin resistance in mice with very long-chain acyl-CoA dehydrogenase deficiency.

    abstract::Mitochondrial fatty acid oxidation provides an important energy source for cellular metabolism, and decreased mitochondrial fatty acid oxidation has been implicated in the pathogenesis of type 2 diabetes. Paradoxically, mice with an inherited deficiency of the mitochondrial fatty acid oxidation enzyme, very long-chain...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2010.03.012

    authors: Zhang D,Christianson J,Liu ZX,Tian L,Choi CS,Neschen S,Dong J,Wood PA,Shulman GI

    更新日期:2010-05-05 00:00:00