Formation of an 8-hydroxyguanine moiety in deoxyribonucleic acid on gamma-irradiation in aqueous solution.

Abstract:

:Isolation and characterization of a novel radiation-induced product, i.e., the 8-hydroxyguanine residue, produced in deoxyribonucleic acid (DNA), 2'-deoxyguanosine, and 2'-deoxyguanosine 5'-monophosphate by gamma-irradiation in aqueous solution, are described. For this purpose, gamma-irradiated DNA was first hydrolyzed with a mixture of four enzymes, i.e., DNase I, spleen and snake venom exonucleases, and alkaline phosphatase. Analysis of the resulting mixture by capillary gas chromatography-mass spectrometry after trimethylsilylation revealed the presence of a product, which was identified as 8-hydroxy-2'-deoxyguanosine on the basis of the typical fragment ions of its trimethylsilyl (Me3Si) derivative. This product was then isolated by using reversed-phase high-performance liquid chromatography. The UV and proton nuclear magnetic resonance spectra taken from the isolated product confirmed the structure suggested by the mass spectrum of its Me3Si derivative. In addition, the accurate molecular mass of the Me3Si derivative of the isolated product was determined by MS. The obtained value agreed with the theoretical molecular mass within 1 millimass unit. The yield of 8-hydroxyguanine was also measured. Its mechanism of formation is believed to involve OH radical addition to the C-8 position of guanine followed by oxidation of the radical adduct.

journal_name

Biochemistry

journal_title

Biochemistry

authors

Dizdaroglu M

doi

10.1021/bi00337a032

subject

Has Abstract

pub_date

1985-07-30 00:00:00

pages

4476-81

issue

16

eissn

0006-2960

issn

1520-4995

journal_volume

24

pub_type

杂志文章