Degradation of oxidized insulin B chain by the multiproteinase complex macropain (proteasome).

Abstract:

:The peptides generated from the degradation of the oxidized B chain of bovine insulin by the multiproteinase complex macropain (proteasome) have been analyzed by reverse-phase peptide mapping and identified by N-terminal amino acid sequencing and composition analysis. Six of the 29 peptide bonds in the insulin B chain were found to be rapidly cleaved by macropain. The catalytic center that cleaves the Gln4-His5 bond could be distinguished from the center or centers that cleave the other preferred bonds by its specific susceptibility to inhibition by leupeptin, antipain, chymostatin, and pentamidine, suggesting that macropain utilizes at least two distinct catalytic centers for the degradation of this model polypeptide. The same effectors simultaneously enhance the rate of cleavage at the other susceptible sites in insulin B. The quantitative characteristics of this effect indicate that different catalytic centers of the complex may be functionally coupled, possibly by an allosteric mechanism or possibly by a mechanism in which binding to the catalytic centers is preceded by a rate-limiting binding of the substrate to a site or sites on the enzyme distinct from the catalytic centers. The kinetics of insulin B chain degradation indicate that macropain can catalyze sequential hydrolysis of peptide bonds in a single substrate molecule via a reaction pathway that involves channeling of peptide intermediates between different catalytic centers within the multienzyme complex. This capacity for channeling may confer potential physiological advantages of increasing the efficiency of amino acid recycling and reducing the pool sizes of peptide intermediates that are generated during the degradation of polypeptides in the intracellular milieu.

journal_name

Biochemistry

journal_title

Biochemistry

authors

Dick LR,Moomaw CR,DeMartino GN,Slaughter CA

doi

10.1021/bi00224a022

subject

Has Abstract

pub_date

1991-03-12 00:00:00

pages

2725-34

issue

10

eissn

0006-2960

issn

1520-4995

journal_volume

30

pub_type

杂志文章