Response to: The mitochondria-targeted antioxidant MitoQ attenuates exercise-induced mitochondrial DNA damage (Williamson et al., available online 6 August 2020, 101,673).

Abstract:

:Williamson and colleagues present important data on the effects of MitoQ - an antioxidant compound targeted to mitochondria - on mtDNA damage following exercise. Future studies are needed to elucidate, whether or not the observed prevention of MitoQ on DNA damage is beneficial with regard to functional outcomes in healthy, exercising humans in dependence of the exercise stimulus and individual characteristics of the person.

journal_name

Redox Biol

journal_title

Redox biology

authors

Burtscher J,Burtscher M,Millet GP

doi

10.1016/j.redox.2020.101732

subject

Has Abstract

pub_date

2021-01-01 00:00:00

pages

101732

issn

2213-2317

pii

S2213-2317(20)30937-X

journal_volume

38

pub_type

杂志文章
  • Mechanisms by which heme oxygenase rescue renal dysfunction in obesity.

    abstract::Obesity and excessive inflammation/oxidative stress are pathophysiological forces associated with kidney dysfunction. Although we recently showed that heme-oxygenase (HO) improves renal functions, the mechanisms are largely unclear. Moreover, the effects of the HO-system on podocyte cytoskeletal proteins like podocin,...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2014.09.001

    authors: Ndisang JF,Tiwari S

    更新日期:2014-01-01 00:00:00

  • Mitochondrial stress signaling in longevity: a new role for mitochondrial function in aging.

    abstract::Mitochondria are principal regulators of cellular function and metabolism through production of ATP for energy homeostasis, maintenance of calcium homeostasis, regulation of apoptosis and fatty acid oxidation to provide acetyl CoA for fueling the electron transport chain. In addition, mitochondria play a key role in c...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2014.07.005

    authors: Hill S,Van Remmen H

    更新日期:2014-07-27 00:00:00

  • SIRT1 inhibition causes oxidative stress and inflammation in patients with coronary artery disease.

    abstract::Coronary artery disease (CAD) is the primary critical cardiovascular event. Endothelial cell and monocyte dysfunction with subsequent extravagant inflammation are the main causes of vessel damage in CAD. Thus, strategies that repress cell death and manage unsuitable pro-inflammatory responses in CAD are potential ther...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.05.027

    authors: Chan SH,Hung CH,Shih JY,Chu PM,Cheng YH,Lin HC,Tsai KL

    更新日期:2017-10-01 00:00:00

  • Low sulfide levels and a high degree of cystathionine β-synthase (CBS) activation by S-adenosylmethionine (SAM) in the long-lived naked mole-rat.

    abstract::Hydrogen sulfide (H2S) is a gaseous signalling molecule involved in many physiological and pathological processes. There is increasing evidence that H2S is implicated in aging and lifespan control in the diet-induced longevity models. However, blood sulfide concentration of naturally long-lived species is not known. H...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2016.01.008

    authors: Dziegelewska M,Holtze S,Vole C,Wachter U,Menzel U,Morhart M,Groth M,Szafranski K,Sahm A,Sponholz C,Dammann P,Huse K,Hildebrandt T,Platzer M

    更新日期:2016-08-01 00:00:00

  • Modulation of FLT3 signal transduction through cytoplasmic cysteine residues indicates the potential for redox regulation.

    abstract::Oxidative modification of cysteine residues has been shown to regulate the activity of several protein-tyrosine kinases. We explored the possibility that Fms-like tyrosine kinase 3 (FLT3), a hematopoietic receptor-tyrosine kinase, is subject to this type of regulation. An underlying rationale was that the FLT3 gene is...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101325

    authors: Böhmer A,Barz S,Schwab K,Kolbe U,Gabel A,Kirkpatrick J,Ohlenschläger O,Görlach M,Böhmer FD

    更新日期:2020-01-01 00:00:00

  • The m6A reader YTHDC2 inhibits lung adenocarcinoma tumorigenesis by suppressing SLC7A11-dependent antioxidant function.

    abstract::The biological functions of N6-methyladenosine (m6A) RNA methylation are mainly dependent on the reader; however, its role in lung tumorigenesis remains unclear. Here, we have demonstrated that the m6A reader YT521-B homology domain containing 2 (YTHDC2) is frequently suppressed in lung adenocarcinoma (LUAD). Downregu...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101801

    authors: Ma L,Chen T,Zhang X,Miao Y,Tian X,Yu K,Xu X,Niu Y,Guo S,Zhang C,Qiu S,Qiao Y,Fang W,Du L,Yu Y,Wang J

    更新日期:2021-01-01 00:00:00

  • Sestrin2 modulates cardiac inflammatory response through maintaining redox homeostasis during ischemia and reperfusion.

    abstract::Ischemia heart disease is the leading cause of death world-widely and has increased prevalence and exacerbated myocardial infarction with aging. Sestrin2, a stress-inducible protein, declines with aging in the heart and the rescue of Sestrin2 in the aged mouse heart improves the resistance to ischemic insults caused b...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101556

    authors: Ren D,Quan N,Fedorova J,Zhang J,He Z,Li J

    更新日期:2020-07-01 00:00:00

  • Peroxiredoxin-mediated disulfide bond formation is required for nucleocytoplasmic translocation and secretion of HMGB1 in response to inflammatory stimuli.

    abstract::The nuclear protein HMGB1 (high mobility group box 1) is secreted by monocytes-macrophages in response to inflammatory stimuli and serves as a danger-associated molecular pattern. Acetylation and phosphorylation of HMGB1 are implicated in the regulation of its nucleocytoplasmic translocation for secretion, although in...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101203

    authors: Kwak MS,Kim HS,Lkhamsuren K,Kim YH,Han MG,Shin JM,Park IH,Rhee WJ,Lee SK,Rhee SG,Shin JS

    更新日期:2019-06-01 00:00:00

  • A novel S-sulfhydrated human serum albumin preparation suppresses melanin synthesis.

    abstract::Products of ultraviolet (UV) irradiation such as reactive oxygen species (ROS) and nitric oxide (NO) stimulate melanin synthesis. Reactive sulfur species (RSS) have been shown to have strong ROS and NO scavenging effects. However, the instability and low retention of RSS limit their use as inhibitors of melanin synthe...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.10.007

    authors: Ikeda M,Ishima Y,Kinoshita R,Chuang VTG,Tasaka N,Matsuo N,Watanabe H,Shimizu T,Ishida T,Otagiri M,Maruyama T

    更新日期:2018-04-01 00:00:00

  • JNK signalling regulates antioxidant responses in neurons.

    abstract::Reactive oxygen species (ROS) are generated during physiological bouts of synaptic activity and as a consequence of pathological conditions in the central nervous system. How neurons respond to and distinguish between ROS in these different contexts is currently unknown. In Drosophila mutants with enhanced JNK activit...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101712

    authors: Ugbode C,Garnham N,Fort-Aznar L,Evans GJO,Chawla S,Sweeney ST

    更新日期:2020-10-01 00:00:00

  • MZe786, a hydrogen sulfide-releasing aspirin prevents preeclampsia in heme oxygenase-1 haplodeficient pregnancy under high soluble flt-1 environment.

    abstract::Preeclampsia affects one in twelve of the 130 million pregnancies a year. The lack of an effective therapeutic to prevent or treat it is responsible for an annual global cost burden of 100 billion US dollars. Preeclampsia also affects these women later in life as it is a recognised risk factor for cardiovascular disea...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101768

    authors: Rezai H,Ahmad S,Alzahrani FA,Sanchez-Aranguren L,Dias IH,Agrawal S,Sparatore A,Wang K,Ahmed A

    更新日期:2021-01-01 00:00:00

  • Interrelation between ROS and Ca2+ in aging and age-related diseases.

    abstract::Calcium (Ca2+) and reactive oxygen species (ROS) are versatile signaling molecules coordinating physiological and pathophysiological processes. While channels and pumps shuttle Ca2+ ions between extracellular space, cytosol and cellular compartments, short-lived and highly reactive ROS are constantly generated by vari...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2020.101678

    authors: Madreiter-Sokolowski CT,Thomas C,Ristow M

    更新日期:2020-09-01 00:00:00

  • Redox signaling during hypoxia in mammalian cells.

    abstract::Hypoxia triggers a wide range of protective responses in mammalian cells, which are mediated through transcriptional and post-translational mechanisms. Redox signaling in cells by reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) occurs through the reversible oxidation of cysteine thiol groups, resulting ...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2017.05.020

    authors: Smith KA,Waypa GB,Schumacker PT

    更新日期:2017-10-01 00:00:00

  • Estradiol improves cardiovascular function through up-regulation of SOD2 on vascular wall.

    abstract::Epidemiological studies have shown that estrogens have protective effects in cardiovascular diseases, even though the results from human clinical trials remain controversial, while most of the animal experiments confirmed this effect, but the detailed mechanism remains unclear. In this study, we found that estradiol (...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2014.11.001

    authors: Liu Z,Gou Y,Zhang H,Zuo H,Zhang H,Liu Z,Yao D

    更新日期:2014-01-01 00:00:00

  • Nitrosative stress in human skeletal muscle attenuated by exercise countermeasure after chronic disuse.

    abstract::Activity-induced nitric oxide (NO) imbalance and "nitrosative stress" are proposed mechanisms of disrupted Ca(2+) homeostasis in atrophic skeletal muscle. We thus mapped S-nitrosylated (SNO) functional muscle proteins in healthy male subjects in a long-term bed rest study (BBR2-2 Study) without and with exercise as co...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2013.10.006

    authors: Salanova M,Schiffl G,Gutsmann M,Felsenberg D,Furlan S,Volpe P,Clarke A,Blottner D

    更新日期:2013-10-28 00:00:00

  • AVE 0991 attenuates oxidative stress and neuronal apoptosis via Mas/PKA/CREB/UCP-2 pathway after subarachnoid hemorrhage in rats.

    abstract::Oxidative stress and neuronal apoptosis have been demonstrated to be key features in early brain injury (EBI) after subarachnoid hemorrhage (SAH). Previous studies have indicated that Mas receptor activation initiates an anti-oxidative and anti-apoptotic role in the brain. However, whether Mas activation can attenuate...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.09.022

    authors: Mo J,Enkhjargal B,Travis ZD,Zhou K,Wu P,Zhang G,Zhu Q,Zhang T,Peng J,Xu W,Ocak U,Chen Y,Tang J,Zhang J,Zhang JH

    更新日期:2019-01-01 00:00:00

  • Electron paramagnetic resonance spectroscopy reveals alterations in the redox state of endogenous copper and iron complexes in photodynamic stress-induced ischemic mouse liver.

    abstract::Divalent copper and iron cations have been acknowledged for their catalytic roles in physiological processes critical for homeostasis maintenance. Being redox-active, these metals act as cofactors in the enzymatic reactions of electron transfer. However, under pathophysiological conditions, owing to their high redox p...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101566

    authors: Jakubowska MA,Pyka J,Michalczyk-Wetula D,Baczyński K,Cieśla M,Susz A,Ferdek PE,Płonka BK,Fiedor L,Płonka PM

    更新日期:2020-07-01 00:00:00

  • Redox mechanisms in age-related lung fibrosis.

    abstract::Redox signaling and oxidative stress are associated with tissue fibrosis and aging. Aging is recognized as a major risk factor for fibrotic diseases involving multiple organ systems, including that of the lung. A number of oxidant generating enzymes are upregulated while antioxidant defenses are deficient with aging a...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2016.06.005

    authors: Kurundkar A,Thannickal VJ

    更新日期:2016-10-01 00:00:00

  • Persistent oxidative stress in human neural stem cells exposed to low fluences of charged particles.

    abstract::Exposure to the space radiation environment poses risks for a range of deleterious health effects due to the unique types of radiation encountered. Galactic cosmic rays are comprised of a spectrum of highly energetic nuclei that deposit densely ionizing tracks of damage along the particle trajectory. These tracks are ...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2015.03.001

    authors: Baulch JE,Craver BM,Tran KK,Yu L,Chmielewski N,Allen BD,Limoli CL

    更新日期:2015-08-01 00:00:00

  • Baicalin combats glutamate excitotoxicity via protecting glutamine synthetase from ROS-induced 20S proteasomal degradation.

    abstract:BACKGROUND:Many neuroprotective approaches targeting neurons in animal models fail to provide benefits for the treatment of ischemic stroke in clinic and glial cells have become the targets in some basic studies. Baicalin has neuroprotective effects but the mechanisms related to glial cells are not revealed. This study...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101559

    authors: Song X,Gong Z,Liu K,Kou J,Liu B,Liu K

    更新日期:2020-07-01 00:00:00

  • Human aquaporin-11 guarantees efficient transport of H2O2 across the endoplasmic reticulum membrane.

    abstract::Hydrogen peroxide (H2O2) is an essential second intracellular messenger. To reach its targets in the cytosol, H2O2 must cross a membrane, a feat that requires aquaporins (AQP) endowed with 'peroxiporin' activity (AQP3, AQP8, AQP9). Here, we exploit different organelle-targeted H2O2-sensitive probes to show that also A...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101326

    authors: Bestetti S,Galli M,Sorrentino I,Pinton P,Rimessi A,Sitia R,Medraño-Fernandez I

    更新日期:2020-01-01 00:00:00

  • Nitric oxide prevents Aft1 activation and metabolic remodeling in frataxin-deficient yeast.

    abstract::Yeast frataxin homolog (Yfh1) is the orthologue of human frataxin, a mitochondrial protein whose deficiency causes Friedreich Ataxia. Yfh1 deficiency activates Aft1, a transcription factor governing iron homeostasis in yeast cells. Although the mechanisms causing this activation are not completely understood, it is as...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.09.001

    authors: Alsina D,Ros J,Tamarit J

    更新日期:2018-04-01 00:00:00

  • Redox balance influences differentiation status of neuroblastoma in the presence of all-trans retinoic acid.

    abstract::Neuroblastoma is the most common extra-cranial solid tumor in childhood; and patients in stage IV of the disease have a high propensity for tumor recurrence. Retinoid therapy has been utilized as a means to induce differentiation of tumor cells and to inhibit relapse. In this study, the expression of a common neuronal...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2015.11.012

    authors: Silvis AM,McCormick ML,Spitz DR,Kiningham KK

    更新日期:2016-04-01 00:00:00

  • SA inhibits complex III activity to generate reactive oxygen species and thereby induces GA overproduction in Ganoderma lucidum.

    abstract::Ganoderma lucidum has high commercial value because it produces many active compounds, such as ganoderic acids (GAs). Salicylic acid (SA) was previously reported to induce the biosynthesis of GA in G. lucidum. In this study, we found that SA induces GA biosynthesis by increasing ROS production, and further research fo...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.03.018

    authors: Liu R,Cao P,Ren A,Wang S,Yang T,Zhu T,Shi L,Zhu J,Jiang AL,Zhao MW

    更新日期:2018-06-01 00:00:00

  • Redoxins as gatekeepers of the transcriptional oxidative stress response.

    abstract::Transcription factors control the rate of transcription of genetic information from DNA to messenger RNA, by binding specific DNA sequences in promoter regions. Transcriptional gene control is a rate-limiting process that is tightly regulated and based on transient environmental signals which are translated into long-...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2019.101104

    authors: Hopkins BL,Neumann CA

    更新日期:2019-02-01 00:00:00

  • Redox status in mammalian cells and stem cells during culture in vitro: critical roles of Nrf2 and cystine transporter activity in the maintenance of redox balance.

    abstract::Culturing cells and tissues in vitro has provided valuable insights into the molecular mechanisms regulating redox signaling in cells with implications for medicine. However, standard culture techniques maintain mammalian cells in vitro under an artificial physicochemical environment such as ambient air and 5% CO2. Ox...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2014.04.008

    authors: Ishii T,Mann GE

    更新日期:2014-04-18 00:00:00

  • Neuronal vulnerability to fetal hypoxia-reoxygenation injury and motor deficit development relies on regional brain tetrahydrobiopterin levels.

    abstract::Hypertonia is pathognomonic of cerebral palsy (CP), often caused by brain injury before birth. To understand the early driving events of hypertonia, we utilized magnetic resonance imaging (MRI) assessment of early critical brain injury in rabbit fetuses (79% term) that will predict hypertonia after birth following ant...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101407

    authors: Vasquez-Vivar J,Shi Z,Jeong JW,Luo K,Sharma A,Thirugnanam K,Tan S

    更新日期:2020-01-01 00:00:00

  • Accelerated FASTK mRNA degradation induced by oxidative stress is responsible for the destroyed myocardial mitochondrial gene expression and respiratory function in alcoholic cardiomyopathy.

    abstract::Chronic alcoholism disrupts mitochondrial function and often results in alcoholic cardiomyopathy (ACM). Fas-activated serine/threonine kinase (FASTK) is newly recognized as a key post-transcriptional regulator of mitochondrial gene expression. However, the modulatory role of FASTK in cardiovascular pathophysiology rem...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101778

    authors: Zhang F,Wang K,Zhang S,Li J,Fan R,Chen X,Pei J

    更新日期:2021-01-01 00:00:00

  • Oxidation of protein disulfide bonds by singlet oxygen gives rise to glutathionylated proteins.

    abstract::Disulfide bonds play a key function in determining the structure of proteins, and are the most strongly conserved compositional feature across proteomes. They are particularly common in extracellular environments, such as the extracellular matrix and plasma, and in proteins that have structural (e.g. matrix) or bindin...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101822

    authors: Jiang S,Carroll L,Rasmussen LM,Davies MJ

    更新日期:2021-01-01 00:00:00

  • Effects of the isoflavone prunetin on gut health and stress response in male Drosophila melanogaster.

    abstract::The traditional Asian diet is rich in fruits, vegetables and soy, the latter representing a significant source of dietary isoflavones. The isoflavone prunetin was recently identified to improve intestinal epithelial barrier function in vitro and to ameliorate general survival and overall health state in vivo in male D...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2016.01.001

    authors: Piegholdt S,Rimbach G,Wagner AE

    更新日期:2016-08-01 00:00:00