Redox signaling during hypoxia in mammalian cells.

Abstract:

:Hypoxia triggers a wide range of protective responses in mammalian cells, which are mediated through transcriptional and post-translational mechanisms. Redox signaling in cells by reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) occurs through the reversible oxidation of cysteine thiol groups, resulting in structural modifications that can change protein function profoundly. Mitochondria are an important source of ROS generation, and studies reveal that superoxide generation by the electron transport chain increases during hypoxia. Other sources of ROS, such as the NAD(P)H oxidases, may also generate oxidant signals in hypoxia. This review considers the growing body of work indicating that increased ROS signals during hypoxia are responsible for regulating the activation of protective mechanisms in diverse cell types.

journal_name

Redox Biol

journal_title

Redox biology

authors

Smith KA,Waypa GB,Schumacker PT

doi

10.1016/j.redox.2017.05.020

subject

Has Abstract

pub_date

2017-10-01 00:00:00

pages

228-234

issn

2213-2317

pii

S2213-2317(17)30235-5

journal_volume

13

pub_type

杂志文章,评审
  • Activation of the mechanosensitive Ca2+ channel TRPV4 induces endothelial barrier permeability via the disruption of mitochondrial bioenergetics.

    abstract::Mechanical ventilation is a life-saving intervention in critically ill patients with respiratory failure due to acute respiratory distress syndrome (ARDS), a refractory lung disease with an unacceptable high mortality rate. Paradoxically, mechanical ventilation also creates excessive mechanical stress that directly au...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101785

    authors: Lu Q,Zemskov EA,Sun X,Wang H,Yegambaram M,Wu X,Garcia-Flores A,Song S,Tang H,Kangath A,Cabanillas GZ,Yuan JX,Wang T,Fineman JR,Black SM

    更新日期:2021-01-01 00:00:00

  • Role of nitrite, urate and pepsin in the gastroprotective effects of saliva.

    abstract::Dietary nitrate is now recognized as an alternative substrate for nitric oxide (•NO) production in the gut. This novel pathway implies the sequential reduction of nitrate to nitrite, •NO and other bioactive nitrogen oxides but the physiological relevance of these oxidants has remained elusive. We have previously shown...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2016.04.002

    authors: Rocha BS,Lundberg JO,Radi R,Laranjinha J

    更新日期:2016-08-01 00:00:00

  • Lung epithelial protein disulfide isomerase A3 (PDIA3) plays an important role in influenza infection, inflammation, and airway mechanics.

    abstract::Protein disulfide isomerases (PDI) are a family of redox chaperones that catalyze formation or isomerization of disulfide bonds in proteins. Previous studies have shown that one member, PDIA3, interacts with influenza A virus (IAV) hemagglutinin (HA), and this interaction is required for efficient oxidative folding of...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101129

    authors: Chamberlain N,Korwin-Mihavics BR,Nakada EM,Bruno SR,Heppner DE,Chapman DG,Hoffman SM,van der Vliet A,Suratt BT,Dienz O,Alcorn JF,Anathy V

    更新日期:2019-04-01 00:00:00

  • FoxO6 inhibits melanogenesis partly by elevating intracellular antioxidant capacity.

    abstract::Of the various transcription factors that play a role in controlling oxidative stress, the role of FoxO proteins in skin aging has recently become of interest. Unlike other FoxOs, FoxO6 remains in the nucleus due to the lack of nuclear export signal, so that it may respond sensitively to intracellular stimuli for the ...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101624

    authors: Moon KM,Lee B,Kim DH,Chung HY

    更新日期:2020-09-01 00:00:00

  • Exercise, redox homeostasis and the epigenetic landscape.

    abstract::Physical exercise represents one of the strongest physiological stimuli capable to induce functional and structural modifications in all biological systems. Indeed, beside the traditional genetic mechanisms, physical exercise can modulate gene expression through epigenetic modifications, namely DNA methylation, post-t...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2020.101477

    authors: Dimauro I,Paronetto MP,Caporossi D

    更新日期:2020-08-01 00:00:00

  • Glutaredoxin-2 controls cardiac mitochondrial dynamics and energetics in mice, and protects against human cardiac pathologies.

    abstract::Glutaredoxin 2 (GRX2), a mitochondrial glutathione-dependent oxidoreductase, is central to glutathione homeostasis and mitochondrial redox, which is crucial in highly metabolic tissues like the heart. Previous research showed that absence of Grx2, leads to impaired mitochondrial complex I function, hypertension and ca...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.10.019

    authors: Kanaan GN,Ichim B,Gharibeh L,Maharsy W,Patten DA,Xuan JY,Reunov A,Marshall P,Veinot J,Menzies K,Nemer M,Harper ME

    更新日期:2018-04-01 00:00:00

  • Distinct and overlapping functions of glutathione peroxidases 1 and 2 in limiting NF-κB-driven inflammation through redox-active mechanisms.

    abstract::Glutathione peroxidase 2 (GPx2) is one of the five selenoprotein GPxs having a selenocysteine in the active center. GPx2 is strongly expressed in the gastrointestinal epithelium, as is another isoform, GPx1, though with a different localization pattern. Both GPxs are redox-active enzymes that are important for the red...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101388

    authors: Koeberle SC,Gollowitzer A,Laoukili J,Kranenburg O,Werz O,Koeberle A,Kipp AP

    更新日期:2020-01-01 00:00:00

  • Redox control of yeast Sir2 activity is involved in acetic acid resistance and longevity.

    abstract::Yeast Sir2 is an NAD-dependent histone deacetylase related to oxidative stress and aging. In a previous study, we showed that Sir2 is regulated by S-glutathionylation of key cysteine residues located at the catalytic domain. Mutation of these residues results in strains with increased resistance to disulfide stress. I...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101229

    authors: Vall-Llaura N,Mir N,Garrido L,Vived C,Cabiscol E

    更新日期:2019-06-01 00:00:00

  • Formation of electrophilic oxidation products from mitochondrial cardiolipin in vitro and in vivo in the context of apoptosis and atherosclerosis.

    abstract::Emerging evidence indicates that mitochondrial cardiolipins (CL) are prone to free radical oxidation and this process appears to be intimately associated with multiple biological functions of mitochondria. Our previous work demonstrated that a significant amount of potent lipid electrophiles including 4-hydroxy-nonena...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2014.04.003

    authors: Zhong H,Lu J,Xia L,Zhu M,Yin H

    更新日期:2014-04-13 00:00:00

  • RITA plus 3-MA overcomes chemoresistance of head and neck cancer cells via dual inhibition of autophagy and antioxidant systems.

    abstract::Reactivation of p53 and induction of tumor cell apoptosis (RITA) is a small molecule that blocks p53-MDM2 interaction, thereby reactivating p53 in tumors. RITA can induce exclusive apoptosis in cancer cells independently of the p53 pathway; however, the resistance of cancer cells remains a major drawback. Here, we fou...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.05.025

    authors: Shin D,Kim EH,Lee J,Roh JL

    更新日期:2017-10-01 00:00:00

  • A quantitative study of the cell-type specific modulation of c-Rel by hydrogen peroxide and TNF-α.

    abstract::Hydrogen peroxide (H2O2) at moderate steady-state concentrations synergizes with TNF-α, leading to increased nuclear levels of NF-κB p65 subunit and to a cell-type specific up-regulation of a limited number of NF-κB-dependent genes. Here, we address how H2O2 achieves this molecular specificity. HeLa and MCF-7 cells we...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2013.05.004

    authors: Oliveira-Marques V,Silva T,Cunha F,Covas G,Marinho HS,Antunes F,Cyrne L

    更新日期:2013-06-21 00:00:00

  • Vascular smooth muscle-MAPK14 is required for neointimal hyperplasia by suppressing VSMC differentiation and inducing proliferation and inflammation.

    abstract::Injury-induced stenosis is a serious vascular complication. We previously reported that p38α (MAPK14), a redox-regulated p38MAPK family member was a negative regulator of the VSMC contractile phenotype in vitro. Here we evaluated the function of VSMC-MAPK14 in vivo in injury-induced neointima hyperplasia and the under...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101137

    authors: Wu W,Zhang W,Choi M,Zhao J,Gao P,Xue M,Singer HA,Jourd'heuil D,Long X

    更新日期:2019-04-01 00:00:00

  • AVE 0991 attenuates oxidative stress and neuronal apoptosis via Mas/PKA/CREB/UCP-2 pathway after subarachnoid hemorrhage in rats.

    abstract::Oxidative stress and neuronal apoptosis have been demonstrated to be key features in early brain injury (EBI) after subarachnoid hemorrhage (SAH). Previous studies have indicated that Mas receptor activation initiates an anti-oxidative and anti-apoptotic role in the brain. However, whether Mas activation can attenuate...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.09.022

    authors: Mo J,Enkhjargal B,Travis ZD,Zhou K,Wu P,Zhang G,Zhu Q,Zhang T,Peng J,Xu W,Ocak U,Chen Y,Tang J,Zhang J,Zhang JH

    更新日期:2019-01-01 00:00:00

  • Thioredoxin and glutaredoxin regulate metabolism through different multiplex thiol switches.

    abstract::The aim of the present study was to define the role of Trx and Grx on metabolic thiol redox regulation and identify their protein and metabolite targets. The hepatocarcinoma-derived HepG2 cell line under both normal and oxidative/nitrosative conditions by overexpression of NO synthase (NOS3) was used as experimental m...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.11.007

    authors: López-Grueso MJ,González-Ojeda R,Requejo-Aguilar R,McDonagh B,Fuentes-Almagro CA,Muntané J,Bárcena JA,Padilla CA

    更新日期:2019-02-01 00:00:00

  • Specific delivery of delta-5-desaturase siRNA via RNA nanoparticles supplemented with dihomo-γ-linolenic acid for colon cancer suppression.

    abstract::We have previously demonstrated that DGLA treatment along with Delta-5-Desaturase (D5D) siRNA in various types of cancer cells enhances the formation of 8-HOA from COX-2-catalyzed DGLA peroxidation, which in turn inhibits cancer cell growth and migration. However, delivery of naked siRNA remains a formidable challenge...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.101085

    authors: Xu Y,Pang L,Wang H,Xu C,Shah H,Guo P,Shu D,Qian SY

    更新日期:2019-02-01 00:00:00

  • Sestrin2 modulates cardiac inflammatory response through maintaining redox homeostasis during ischemia and reperfusion.

    abstract::Ischemia heart disease is the leading cause of death world-widely and has increased prevalence and exacerbated myocardial infarction with aging. Sestrin2, a stress-inducible protein, declines with aging in the heart and the rescue of Sestrin2 in the aged mouse heart improves the resistance to ischemic insults caused b...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101556

    authors: Ren D,Quan N,Fedorova J,Zhang J,He Z,Li J

    更新日期:2020-07-01 00:00:00

  • Increased oxidative stress mediates the antitumor effect of PARP inhibition in ovarian cancer.

    abstract::PARP inhibitors have been widely tested in clinical trials, especially for the treatment of breast cancer and ovarian cancer, and were shown to be highly successful. Because PARP primarily functions in sensing and repairing DNA strand breaks, the therapeutic effect of PARP inhibition is generally believed to be attrib...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.03.016

    authors: Hou D,Liu Z,Xu X,Liu Q,Zhang X,Kong B,Wei JJ,Gong Y,Shao C

    更新日期:2018-07-01 00:00:00

  • MZe786, a hydrogen sulfide-releasing aspirin prevents preeclampsia in heme oxygenase-1 haplodeficient pregnancy under high soluble flt-1 environment.

    abstract::Preeclampsia affects one in twelve of the 130 million pregnancies a year. The lack of an effective therapeutic to prevent or treat it is responsible for an annual global cost burden of 100 billion US dollars. Preeclampsia also affects these women later in life as it is a recognised risk factor for cardiovascular disea...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101768

    authors: Rezai H,Ahmad S,Alzahrani FA,Sanchez-Aranguren L,Dias IH,Agrawal S,Sparatore A,Wang K,Ahmed A

    更新日期:2021-01-01 00:00:00

  • NRF2 and NF-қB interplay in cerebrovascular and neurodegenerative disorders: Molecular mechanisms and possible therapeutic approaches.

    abstract::Electrophiles and reactive oxygen species (ROS) play a major role in modulating cellular defense mechanisms as well as physiological functions, and intracellular signaling. However, excessive ROS generation (endogenous and exogenous) can create a state of redox imbalance leading to cellular and tissue damage (Ma and H...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2018.11.017

    authors: Sivandzade F,Prasad S,Bhalerao A,Cucullo L

    更新日期:2019-02-01 00:00:00

  • Curcuminoid B63 induces ROS-mediated paraptosis-like cell death by targeting TrxR1 in gastric cells.

    abstract::Gastric cancer is one of the leading causes of cancer-related deaths. Chemotherapy has improved long-term survival of patients with gastric cancer. Unfortunately, cancer readily develops resistance to apoptosis-inducing agents. New mechanisms, inducing caspase-independent paraptosis-like cell death in cancer cells is ...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.11.019

    authors: Chen X,Chen X,Zhang X,Wang L,Cao P,Rajamanickam V,Wu C,Zhou H,Cai Y,Liang G,Wang Y

    更新日期:2019-02-01 00:00:00

  • Response to: The mitochondria-targeted antioxidant MitoQ attenuates exercise-induced mitochondrial DNA damage (Williamson et al., available online 6 August 2020, 101,673).

    abstract::Williamson and colleagues present important data on the effects of MitoQ - an antioxidant compound targeted to mitochondria - on mtDNA damage following exercise. Future studies are needed to elucidate, whether or not the observed prevention of MitoQ on DNA damage is beneficial with regard to functional outcomes in hea...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101732

    authors: Burtscher J,Burtscher M,Millet GP

    更新日期:2021-01-01 00:00:00

  • Enhanced autophagic-lysosomal activity and increased BAG3-mediated selective macroautophagy as adaptive response of neuronal cells to chronic oxidative stress.

    abstract::Oxidative stress and a disturbed cellular protein homeostasis (proteostasis) belong to the most important hallmarks of aging and of neurodegenerative disorders. The proteasomal and autophagic-lysosomal degradation pathways are key measures to maintain proteostasis. Here, we report that hippocampal cells selected for f...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101181

    authors: Chakraborty D,Felzen V,Hiebel C,Stürner E,Perumal N,Manicam C,Sehn E,Grus F,Wolfrum U,Behl C

    更新日期:2019-06-01 00:00:00

  • Loss of the ubiquitin conjugating enzyme UBE2E3 induces cellular senescence.

    abstract::Cellular senescence plays essential roles in tissue homeostasis as well as a host of diseases ranging from cancers to age-related neurodegeneration. Various molecular pathways can induce senescence and these different pathways dictate the phenotypic and metabolic changes that accompany the transition to, and maintenan...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.05.008

    authors: Plafker KS,Zyla K,Berry W,Plafker SM

    更新日期:2018-07-01 00:00:00

  • (-)-Epicatechin protects the intestinal barrier from high fat diet-induced permeabilization: Implications for steatosis and insulin resistance.

    abstract::Increased permeability of the intestinal barrier is proposed as an underlying factor for obesity-associated pathologies. Consumption of high fat diets (HFD) is associated with increased intestinal permeabilization and increased paracellular transport of endotoxins which can promote steatosis and insulin resistance. Th...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.11.002

    authors: Cremonini E,Wang Z,Bettaieb A,Adamo AM,Daveri E,Mills DA,Kalanetra KM,Haj FG,Karakas S,Oteiza PI

    更新日期:2018-04-01 00:00:00

  • Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species.

    abstract::Mitochondria fulfill a number of biological functions which inherently depend on ATP and O2(-•)/H2O2 production. Both ATP and O2(-•)/H2O2 are generated by electron transfer reactions. ATP is the product of oxidative phosphorylation whereas O2(-•) is generated by singlet electron reduction of di-oxygen (O2). O2(-•) is ...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2015.02.001

    authors: Mailloux RJ

    更新日期:2015-01-01 00:00:00

  • Keap1 controls protein S-nitrosation and apoptosis-senescence switch in endothelial cells.

    abstract::Premature senescence, a death escaping pathway for cells experiencing stress, is conducive to aging and cardiovascular diseases. The molecular switch between senescent and apoptotic fate remains, however, poorly recognized. Nrf2 is an important transcription factor orchestrating adaptive response to cellular stress. H...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101304

    authors: Kopacz A,Klóska D,Proniewski B,Cysewski D,Personnic N,Piechota-Polańczyk A,Kaczara P,Zakrzewska A,Forman HJ,Dulak J,Józkowicz A,Grochot-Przęczek A

    更新日期:2020-01-01 00:00:00

  • Molecular chaperones and proteostasis regulation during redox imbalance.

    abstract::Free radicals originate from both exogenous environmental sources and as by-products of the respiratory chain and cellular oxygen metabolism. Sustained accumulation of free radicals, beyond a physiological level, induces oxidative stress that is harmful for the cellular homeodynamics as it promotes the oxidative damag...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2014.01.017

    authors: Niforou K,Cheimonidou C,Trougakos IP

    更新日期:2014-01-30 00:00:00

  • Total sulfane sulfur bioavailability reflects ethnic and gender disparities in cardiovascular disease.

    abstract::Hydrogen sulfide (H2S) has emerged as an important physiological and pathophysiological signaling molecule in the cardiovascular system influencing vascular tone, cytoprotective responses, redox reactions, vascular adaptation, and mitochondrial respiration. However, bioavailable levels of H2S in its various biochemica...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.01.007

    authors: Rajpal S,Katikaneni P,Deshotels M,Pardue S,Glawe J,Shen X,Akkus N,Modi K,Bhandari R,Dominic P,Reddy P,Kolluru GK,Kevil CG

    更新日期:2018-05-01 00:00:00

  • Redoxins as gatekeepers of the transcriptional oxidative stress response.

    abstract::Transcription factors control the rate of transcription of genetic information from DNA to messenger RNA, by binding specific DNA sequences in promoter regions. Transcriptional gene control is a rate-limiting process that is tightly regulated and based on transient environmental signals which are translated into long-...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2019.101104

    authors: Hopkins BL,Neumann CA

    更新日期:2019-02-01 00:00:00

  • Redox balance influences differentiation status of neuroblastoma in the presence of all-trans retinoic acid.

    abstract::Neuroblastoma is the most common extra-cranial solid tumor in childhood; and patients in stage IV of the disease have a high propensity for tumor recurrence. Retinoid therapy has been utilized as a means to induce differentiation of tumor cells and to inhibit relapse. In this study, the expression of a common neuronal...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2015.11.012

    authors: Silvis AM,McCormick ML,Spitz DR,Kiningham KK

    更新日期:2016-04-01 00:00:00