Vascular smooth muscle-MAPK14 is required for neointimal hyperplasia by suppressing VSMC differentiation and inducing proliferation and inflammation.

Abstract:

:Injury-induced stenosis is a serious vascular complication. We previously reported that p38α (MAPK14), a redox-regulated p38MAPK family member was a negative regulator of the VSMC contractile phenotype in vitro. Here we evaluated the function of VSMC-MAPK14 in vivo in injury-induced neointima hyperplasia and the underlying mechanism using an inducible SMC-MAPK14 knockout mouse line (iSMC-MAPK14-/-). We show that MAPK14 expression and activity were induced in VSMCs after carotid artery ligation injury in mice and ex vivo cultured human saphenous veins. While the vasculature from iSMC-MAPK14-/- mice was indistinguishable from wildtype littermate controls at baseline, these mice exhibited reduced neointima formation following carotid artery ligation injury. Concomitantly, there was an increased VSMC contractile protein expression in the injured vessels and a decrease in proliferating cells. Blockade of MAPK14 through a selective inhibitor suppressed, while activation of MAPK14 by forced expression of an upstream MAPK14 kinase promoted VSMC proliferation in cultured VSMCs. Genome wide RNA array combined with VSMC lineage tracing studies uncovered that vascular injury evoked robust inflammatory responses including the activation of proinflammatory gene expression and accumulation of CD45 positive inflammatory cells, which were attenuated in iSMC-MAPK14-/- mice. Using multiple pharmacological and molecular approaches to manipulate MAPK14 pathway, we further confirmed the critical role of MAPK14 in activating proinflammatory gene expression in cultured VSMCs, which occurs in a p65/NFkB-dependent pathway. Finally, we found that NOX4 contributes to MAPK14 suppression of the VSMC contractile phenotype. Our results revealed that VSMC-MAPK14 is required for injury-induced neointima formation, likely through suppressing VSMC differentiation and promoting VSMC proliferation and inflammation. Our study will provide mechanistic insights into therapeutic strategies for mitigation of vascular stenosis.

journal_name

Redox Biol

journal_title

Redox biology

authors

Wu W,Zhang W,Choi M,Zhao J,Gao P,Xue M,Singer HA,Jourd'heuil D,Long X

doi

10.1016/j.redox.2019.101137

subject

Has Abstract

pub_date

2019-04-01 00:00:00

pages

101137

issn

2213-2317

pii

S2213-2317(19)30136-3

journal_volume

22

pub_type

杂志文章
  • Reductive stress impairs myogenic differentiation.

    abstract::Myo-satellite cells regenerate and differentiate into skeletal muscle (SM) after acute or chronic injury. Changes in the redox milieu towards the oxidative arm at the wound site are known to compromise SM regeneration. Recently, we reported that abrogation of Nrf2/antioxidant signaling promotes oxidative stress and im...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101492

    authors: Rajasekaran NS,Shelar SB,Jones DP,Hoidal JR

    更新日期:2020-07-01 00:00:00

  • Nitric oxide-mediated sensitization of resistant tumor cells to apoptosis by chemo-immunotherapeutics.

    abstract::The generation of NO by the various NO synthases in normal and malignant tissues is manifested by various biological effects that are involved in the regulation of cell survival, differentiation and cell death. The role of NO in the cytotoxic immune response was first revealed by demonstrating the induction of iNOS in...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2015.08.013

    authors: Bonavida B,Garban H

    更新日期:2015-12-01 00:00:00

  • Modulation of FLT3 signal transduction through cytoplasmic cysteine residues indicates the potential for redox regulation.

    abstract::Oxidative modification of cysteine residues has been shown to regulate the activity of several protein-tyrosine kinases. We explored the possibility that Fms-like tyrosine kinase 3 (FLT3), a hematopoietic receptor-tyrosine kinase, is subject to this type of regulation. An underlying rationale was that the FLT3 gene is...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101325

    authors: Böhmer A,Barz S,Schwab K,Kolbe U,Gabel A,Kirkpatrick J,Ohlenschläger O,Görlach M,Böhmer FD

    更新日期:2020-01-01 00:00:00

  • A review of redox signaling and the control of MAP kinase pathway in plants.

    abstract::Mitogen-activated protein kinase (MAPK) cascades are evolutionarily conserved modules among eukaryotic species that range from yeast, plants, flies to mammals. In eukaryotic cells, reactive oxygen species (ROS) has both physiological and toxic effects. Both MAPK cascades and ROS signaling are involved in plant respons...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2016.12.009

    authors: Liu Y,He C

    更新日期:2017-04-01 00:00:00

  • Thioredoxin and glutaredoxin regulate metabolism through different multiplex thiol switches.

    abstract::The aim of the present study was to define the role of Trx and Grx on metabolic thiol redox regulation and identify their protein and metabolite targets. The hepatocarcinoma-derived HepG2 cell line under both normal and oxidative/nitrosative conditions by overexpression of NO synthase (NOS3) was used as experimental m...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.11.007

    authors: López-Grueso MJ,González-Ojeda R,Requejo-Aguilar R,McDonagh B,Fuentes-Almagro CA,Muntané J,Bárcena JA,Padilla CA

    更新日期:2019-02-01 00:00:00

  • Glutaredoxin-2 controls cardiac mitochondrial dynamics and energetics in mice, and protects against human cardiac pathologies.

    abstract::Glutaredoxin 2 (GRX2), a mitochondrial glutathione-dependent oxidoreductase, is central to glutathione homeostasis and mitochondrial redox, which is crucial in highly metabolic tissues like the heart. Previous research showed that absence of Grx2, leads to impaired mitochondrial complex I function, hypertension and ca...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.10.019

    authors: Kanaan GN,Ichim B,Gharibeh L,Maharsy W,Patten DA,Xuan JY,Reunov A,Marshall P,Veinot J,Menzies K,Nemer M,Harper ME

    更新日期:2018-04-01 00:00:00

  • Green tea polyphenolic antioxidants oxidize hydrogen sulfide to thiosulfate and polysulfides: A possible new mechanism underpinning their biological action.

    abstract::Matcha and green tea catechins such as (-)-epicatechin (EC), (-)-epigallocatechin (EGC) and (-)-epigallocatechin gallate (EGCG) have long been studied for their antioxidant and health-promoting effects. Using specific fluorophores for H2S (AzMC) and polysulfides (SSP4) as well as IC-MS and UPLC-MS/MS-based techniques ...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101731

    authors: Olson KR,Briggs A,Devireddy M,Iovino NA,Skora NC,Whelan J,Villa BP,Yuan X,Mannam V,Howard S,Gao Y,Minnion M,Feelisch M

    更新日期:2020-10-01 00:00:00

  • Redoxins as gatekeepers of the transcriptional oxidative stress response.

    abstract::Transcription factors control the rate of transcription of genetic information from DNA to messenger RNA, by binding specific DNA sequences in promoter regions. Transcriptional gene control is a rate-limiting process that is tightly regulated and based on transient environmental signals which are translated into long-...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2019.101104

    authors: Hopkins BL,Neumann CA

    更新日期:2019-02-01 00:00:00

  • Endothelial nitric oxide synthase in red blood cells: key to a new erythrocrine function?

    abstract::Red blood cells (RBC) have been considered almost exclusively as a transporter of metabolic gases and nutrients for the tissues. It is an accepted dogma that RBCs take up and inactivate endothelium-derived NO via rapid reaction with oxyhemoglobin to form methemoglobin and nitrate, thereby limiting NO available for vas...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2013.12.027

    authors: Cortese-Krott MM,Kelm M

    更新日期:2014-01-09 00:00:00

  • Specific delivery of delta-5-desaturase siRNA via RNA nanoparticles supplemented with dihomo-γ-linolenic acid for colon cancer suppression.

    abstract::We have previously demonstrated that DGLA treatment along with Delta-5-Desaturase (D5D) siRNA in various types of cancer cells enhances the formation of 8-HOA from COX-2-catalyzed DGLA peroxidation, which in turn inhibits cancer cell growth and migration. However, delivery of naked siRNA remains a formidable challenge...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.101085

    authors: Xu Y,Pang L,Wang H,Xu C,Shah H,Guo P,Shu D,Qian SY

    更新日期:2019-02-01 00:00:00

  • p38α in macrophages aggravates arterial endothelium injury by releasing IL-6 through phosphorylating megakaryocytic leukemia 1.

    abstract:BACKGROUND:Macrophages regulate the inflammatory response and affect re-endothelialization. Inflammation and macrophages play important roles in promoting tissue repair, but p38α mitogen-activated protein kinase's role in re-endothelialization is unknown. METHODS AND RESULTS:Wire injuries of carotid arteries and Evans...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101775

    authors: Zhang M,Gao J,Zhao X,Zhao M,Ma D,Zhang X,Tian D,Pan B,Yan X,Wu J,Meng X,Yin H,Zheng L

    更新日期:2021-01-01 00:00:00

  • Redox-dependent condensation of the mycobacterial nucleoid by WhiB4.

    abstract::Oxidative stress response in bacteria is mediated through coordination between the regulators of oxidant-remediation systems (e.g. OxyR, SoxR) and nucleoid condensation (e.g. Dps, Fis). However, these genetic factors are either absent or rendered non-functional in the human pathogen Mycobacterium tuberculosis (Mtb). T...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.08.006

    authors: Chawla M,Mishra S,Anand K,Parikh P,Mehta M,Vij M,Verma T,Singh P,Jakkala K,Verma HN,AjitKumar P,Ganguli M,Narain Seshasayee AS,Singh A

    更新日期:2018-10-01 00:00:00

  • Age-related oxidative stress confines damage-responsive Bmi1+ cells to perivascular regions in the murine adult heart.

    abstract::Adult progenitor cells reside in specialized microenvironments which maintain their undifferentiated cell state and trigger regenerative responses following injury. Although these environments are well described in several tissues, the cellular components that comprise the cardiac environment where progenitor cells ar...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101156

    authors: Herrero D,Cañón S,Albericio G,Carmona RM,Aguilar S,Mañes S,Bernad A

    更新日期:2019-04-01 00:00:00

  • The aryl hydrocarbon receptor as a target of environmental stressors - Implications for pollution mediated stress and inflammatory responses.

    abstract::The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor regulating the expression of genes, for instance encoding the monooxygenases cytochrome P450 (CYP) 1A1 and CYP1A2, which are important enzymes in metabolism of xenobiotics. The AHR is activated upon binding of polycyclic aromatic hydrocarbo...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2020.101530

    authors: Vogel CFA,Van Winkle LS,Esser C,Haarmann-Stemmann T

    更新日期:2020-07-01 00:00:00

  • Sulfite-induced protein radical formation in LPS aerosol-challenged mice: Implications for sulfite sensitivity in human lung disease.

    abstract::Exposure to (bi)sulfite (HSO3-) and sulfite (SO32-) has been shown to induce a wide range of adverse reactions in sensitive individuals. Studies have shown that peroxidase-catalyzed oxidation of (bi)sulfite leads to formation of several reactive free radicals, such as sulfur trioxide anion (.SO3-), peroxymonosulfate (...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.12.014

    authors: Kumar A,Triquigneaux M,Madenspacher J,Ranguelova K,Bang JJ,Fessler MB,Mason RP

    更新日期:2018-05-01 00:00:00

  • L-dehydroascorbic acid can substitute l-ascorbic acid as dietary vitamin C source in guinea pigs.

    abstract::Vitamin C deficiency globally affects several hundred million people and has been associated with increased morbidity and mortality in numerous studies. In this study, bioavailability of the oxidized form of vitamin C (l-dehydroascorbic acid or DHA)-commonly found in vitamin C containing food products prone to oxidati...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2015.11.003

    authors: Frikke-Schmidt H,Tveden-Nyborg P,Lykkesfeldt J

    更新日期:2016-04-01 00:00:00

  • Mitochondrial dysfunction in Parkinsonian mesenchymal stem cells impairs differentiation.

    abstract::Sporadic cases account for 90-95% of all patients with Parkinson's Disease (PD). Atypical Parkinsonism comprises approximately 20% of all patients with parkinsonism. Progressive Supranuclear Palsy (PSP) belongs to the atypical parkinsonian diseases and is histopathologically classified as a tauopathy. Here, we report ...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.10.016

    authors: Angelova PR,Barilani M,Lovejoy C,Dossena M,Viganò M,Seresini A,Piga D,Gandhi S,Pezzoli G,Abramov AY,Lazzari L

    更新日期:2018-04-01 00:00:00

  • Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy.

    abstract::In order to overcome intercellular variability and thereby effectively assess signal propagation in biological networks it is imperative to simultaneously quantify multiple biological observables in single living cells. While fluorescent biosensors have been the tool of choice to monitor the dynamics of protein intera...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.07.023

    authors: Corbat AA,Schuermann KC,Liguzinski P,Radon Y,Bastiaens PIH,Verveer PJ,Grecco HE

    更新日期:2018-10-01 00:00:00

  • Cysteine persulfides and polysulfides produced by exchange reactions with H2S protect SH-SY5Y cells from methylglyoxal-induced toxicity through Nrf2 activation.

    abstract::Many physiological functions of hydrogen sulfide (H2S) have been reported in mammalian cells over the last 20 years. These physiological effects have been ascertained through in vitro treatment of cells with Na2S or NaHS, both of which are precursors of H2S. Since H2S exists as HS- in a neutral solution, a disulfide c...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.03.020

    authors: Koike S,Nishimoto S,Ogasawara Y

    更新日期:2017-08-01 00:00:00

  • Redox regulation of microRNAs in endometriosis-associated pain.

    abstract::Endometriosis is a chronic, painful condition with unknown etiology. A differential expression of microRNAs in the endometriotic tissues from women with endometriosis with pain compared to those without suggested a plausible role for miRNA or epigenetic mechanisms in the etiology of endometriotic pain. The peritoneal ...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.04.037

    authors: Wright KR,Mitchell B,Santanam N

    更新日期:2017-08-01 00:00:00

  • Elastin aging and lipid oxidation products in human aorta.

    abstract::Vascular aging is associated with structural and functional modifications of the arteries, and by an increase in arterial wall thickening in the intima and the media, mainly resulting from structural modifications of the extracellular matrix (ECM) components. Among the factors known to accumulate with aging, advanced ...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2014.12.008

    authors: Zarkovic K,Larroque-Cardoso P,Pucelle M,Salvayre R,Waeg G,Nègre-Salvayre A,Zarkovic N

    更新日期:2015-01-01 00:00:00

  • Electrophiles modulate glutathione reductase activity via alkylation and upregulation of glutathione biosynthesis.

    abstract::Cells evolved robust homeostatic mechanisms to protect against oxidation or alkylation by electrophilic species. Glutathione (GSH) is the most abundant intracellular thiol, protects cellular components from oxidation and is maintained in a reduced state by glutathione reductase (GR). Nitro oleic acid (NO2-OA) is an el...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.11.008

    authors: Jobbagy S,Vitturi DA,Salvatore SR,Turell L,Pires MF,Kansanen E,Batthyany C,Lancaster JR Jr,Freeman BA,Schopfer FJ

    更新日期:2019-02-01 00:00:00

  • The impact of partial hepatectomy on oxidative state in the liver remnant - An in vivo swine model.

    abstract:BACKGROUND:Previous studies on oxidative state after partial hepatectomy (PHx) report conflicting data on levels of glutathione (GSH) and are mainly presented in rodent models by methodology less sensitive than the present technologies. The current swine model presents GSH levels and the following genetic response post...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2016.05.005

    authors: Florholmen-Kjær Å,Goll R,Fuskevåg OM,Nygård IE,Paulssen RH,Revhaug A,Mortensen KE

    更新日期:2016-10-01 00:00:00

  • Clinical relevance of guanine-derived urinary biomarkers of oxidative stress, determined by LC-MS/MS.

    abstract::A reliable and fast liquid chromatography-tandem mass spectrometry method has been developed for the simultaneous determination of three oxidized nucleic acid damage products in urine, 8-oxoguanine (8-oxoGua), 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) and 8-oxo-7,8-dihydroguanosine (8-oxoGuo). We applied this me...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.11.016

    authors: Shih YM,Cooke MS,Pan CH,Chao MR,Hu CW

    更新日期:2019-01-01 00:00:00

  • Curcumin blunts epithelial-mesenchymal transition of hepatocytes to alleviate hepatic fibrosis through regulating oxidative stress and autophagy.

    abstract::The massive production and activation of myofibroblasts (MFB) is key to the development of liver fibrosis. In many studies, it has been proven that hepatocytes are an important part of MFB, and can be transformed into MFB through epithelial-mesenchymal transition (EMT) during hepatic fibrogenesis. In our previous stud...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101600

    authors: Kong D,Zhang Z,Chen L,Huang W,Zhang F,Wang L,Wang Y,Cao P,Zheng S

    更新日期:2020-09-01 00:00:00

  • A novel S-sulfhydrated human serum albumin preparation suppresses melanin synthesis.

    abstract::Products of ultraviolet (UV) irradiation such as reactive oxygen species (ROS) and nitric oxide (NO) stimulate melanin synthesis. Reactive sulfur species (RSS) have been shown to have strong ROS and NO scavenging effects. However, the instability and low retention of RSS limit their use as inhibitors of melanin synthe...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.10.007

    authors: Ikeda M,Ishima Y,Kinoshita R,Chuang VTG,Tasaka N,Matsuo N,Watanabe H,Shimizu T,Ishida T,Otagiri M,Maruyama T

    更新日期:2018-04-01 00:00:00

  • Low sulfide levels and a high degree of cystathionine β-synthase (CBS) activation by S-adenosylmethionine (SAM) in the long-lived naked mole-rat.

    abstract::Hydrogen sulfide (H2S) is a gaseous signalling molecule involved in many physiological and pathological processes. There is increasing evidence that H2S is implicated in aging and lifespan control in the diet-induced longevity models. However, blood sulfide concentration of naturally long-lived species is not known. H...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2016.01.008

    authors: Dziegelewska M,Holtze S,Vole C,Wachter U,Menzel U,Morhart M,Groth M,Szafranski K,Sahm A,Sponholz C,Dammann P,Huse K,Hildebrandt T,Platzer M

    更新日期:2016-08-01 00:00:00

  • A novel role for NUPR1 in the keratinocyte stress response to UV oxidized phospholipids.

    abstract::Ultraviolet light is the dominant environmental oxidative skin stressor and a major skin aging factor. We studied which oxidized phospholipid (OxPL) mediators would be generated in primary human keratinocytes (KC) upon exposure to ultraviolet A light (UVA) and investigated the contribution of OxPL to UVA responses. Ma...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.11.006

    authors: Narzt MS,Nagelreiter IM,Oskolkova O,Bochkov VN,Latreille J,Fedorova M,Ni Z,Sialana FJ,Lubec G,Filzwieser M,Laggner M,Bilban M,Mildner M,Tschachler E,Grillari J,Gruber F

    更新日期:2019-01-01 00:00:00

  • Oxidative stress during acetaminophen hepatotoxicity: Sources, pathophysiological role and therapeutic potential.

    abstract::Acetaminophen (APAP) hepatotoxicity is characterized by an extensive oxidative stress. However, its source, pathophysiological role and possible therapeutic potential if targeted, have been controversially described. Earlier studies argued for cytochrome P450-generated reactive oxygen species (ROS) during APAP metabol...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2016.10.001

    authors: Du K,Ramachandran A,Jaeschke H

    更新日期:2016-12-01 00:00:00

  • ROS-mediated lysosomal membrane permeabilization is involved in bupivacaine-induced death of rabbit intervertebral disc cells.

    abstract::Bupivacaine is frequently administered for diagnosing and controlling spine-related pain in interventional spine procedures. However, the potential cytotoxic effects of bupivacaine on intervertebral disc (IVD) cells and the underlying molecular mechanisms have not yet been fully established. Here, we showed that bupiv...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.06.010

    authors: Cai X,Liu Y,Hu Y,Liu X,Jiang H,Yang S,Shao Z,Xia Y,Xiong L

    更新日期:2018-09-01 00:00:00