Nitrogen and phosphorus removal from anaerobically digested wastewater by microalgae cultured in a novel membrane photobioreactor.

Abstract:

Background:With the further development of anaerobic digestion, an increasing output of anaerobically digested wastewater (ADW), which typically contained high concentrations of ammonium, phosphate, and suspended solids, was inevitable. Microalgae cultivation offered a potential waste-to-value strategy to reduce the high nutrient content in ADW and obtain high value-added microalgae. However, ADW generally contained a mass of pollutants (suspended solids, competitors, etc.), which could inhibit microalgae growth and even result in microalgae death by limiting light utilization. Thus, it is highly imperative to solve the problem by a novel modified photobioreactor for further practical applications. Results:Four microalgae species, Scenedesmus dimorphus, Scenedesmus quadricauda, Chlorella sorokiniana, and Chlorella vulgaris ESP-6, were cultivated in the membrane photobioreactor (MPBR) fed with ADW to investigate the efficiency of ammonia and phosphorus removal. The results showed that C. sorokiniana had the best performance for the removal of ammonia and phosphorus from ADW. The highest amount of C. sorokiniana biomass was 1.15 g/L, and the removal efficiency of phosphate (66.2%) peaked at an ammonia concentration of 128.5 mg/L after 9 days' incubation. Moreover, the MPBR with 0.1 μm membrane pore size had the best ammonia and phosphate removal efficiencies (43.9 and 64.9%) at an ammonia concentration of 128.5 mg/L during 9 days' incubation. Finally, the continuous multi-batch cultivation of C. sorokiniana was performed for 45 days in MPBR, and higher removal ammonia amount (18.1 mg/day) and proteins content (45.6%) were obtained than those (14.5 mg/day and 37.4%) in an normal photobioreactor. Conclusion:In this study, a novel MPBR not only eliminated the inhibitory effects of suspended solid and microorganisms, but also maintained a high microalgae concentration to obtain a high amount of ammonia and phosphate removal. The research provided a theoretical foundation for the practical application of MPBRs in various wastewater treatment schemes without pretreatment by algae, which could be used as biofuels or protein feed.

journal_name

Biotechnol Biofuels

authors

Chen X,Li Z,He N,Zheng Y,Li H,Wang H,Wang Y,Lu Y,Li Q,Peng Y

doi

10.1186/s13068-018-1190-0

subject

Has Abstract

pub_date

2018-07-09 00:00:00

pages

190

issn

1754-6834

pii

1190

journal_volume

11

pub_type

杂志文章
  • Characterization of a glucose-tolerant β-glucosidase from Anoxybacillus sp. DT3-1.

    abstract:BACKGROUND:In general, biofuel production involves biomass pretreatment and enzymatic saccharification, followed by the subsequent sugar conversion to biofuel via fermentation. The crucial step in the production of biofuel from biomass is the enzymatic saccharification. Many of the commercial cellulase enzyme cocktails...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0587-x

    authors: Chan CS,Sin LL,Chan KG,Shamsir MS,Manan FA,Sani RK,Goh KM

    更新日期:2016-08-22 00:00:00

  • Peptide-based functional annotation of carbohydrate-active enzymes by conserved unique peptide patterns (CUPP).

    abstract:Background:Insight into the function of carbohydrate-active enzymes is required to understand their biological role and industrial potential. There is a need for better use of the ample genomic data in order to enable selection of the most interesting proteins for further studies. The basis for elaborating a new approa...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1436-5

    authors: Barrett K,Lange L

    更新日期:2019-04-30 00:00:00

  • Ethanol production from mixtures of wheat straw and wheat meal.

    abstract:BACKGROUND:Bioethanol can be produced from sugar-rich, starch-rich (first generation; 1G) or lignocellulosic (second generation; 2G) raw materials. Integration of 2G ethanol with 1G could facilitate the introduction of the 2G technology. The capital cost per ton of fuel produced would be diminished and better utilizati...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-3-16

    authors: Erdei B,Barta Z,Sipos B,Réczey K,Galbe M,Zacchi G

    更新日期:2010-07-02 00:00:00

  • A bionic system with Fenton reaction and bacteria as a model for bioprocessing lignocellulosic biomass.

    abstract:Background:The recalcitrance of lignocellulosic biomass offers a series of challenges for biochemical processing into biofuels and bio-products. For the first time, we address these challenges with a biomimetic system via a mild yet rapid Fenton reaction and lignocellulose-degrading bacterial strain Cupriavidus basilen...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1035-x

    authors: Zhang K,Si M,Liu D,Zhuo S,Liu M,Liu H,Yan X,Shi Y

    更新日期:2018-02-08 00:00:00

  • A novel thermostable xylanase GH10 from Malbranchea pulchella expressed in Aspergillus nidulans with potential applications in biotechnology.

    abstract:BACKGROUND:The search for novel thermostable xylanases for industrial use has intensified in recent years, and thermophilic fungi are a promising source of useful enzymes. The present work reports the heterologous expression and biochemical characterization of a novel thermostable xylanase (GH10) from the thermophilic ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-7-115

    authors: Ribeiro LF,De Lucas RC,Vitcosque GL,Ribeiro LF,Ward RJ,Rubio MV,Damásio AR,Squina FM,Gregory RC,Walton PH,Jorge JA,Prade RA,Buckeridge MS,Polizeli Mde L

    更新日期:2014-07-29 00:00:00

  • Synergistic effects of mixing hybrid poplar and wheat straw biomass for bioconversion processes.

    abstract:BACKGROUND:Low cost of raw materials and good process yields are necessary for future lignocellulosic biomass biorefineries to be sustainable and profitable. A low cost feedstock will be diverse, changing as a function of seasonality and price and will most likely be available from multiple sources to the biorefinery. ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0414-9

    authors: Vera RM,Bura R,Gustafson R

    更新日期:2015-12-24 00:00:00

  • Genome and methylome of the oleaginous diatom Cyclotella cryptica reveal genetic flexibility toward a high lipid phenotype.

    abstract:BACKGROUND:Improvement in the performance of eukaryotic microalgae for biofuel and bioproduct production is largely dependent on characterization of metabolic mechanisms within the cell. The marine diatom Cyclotella cryptica, which was originally identified in the Aquatic Species Program, is a promising strain of micro...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0670-3

    authors: Traller JC,Cokus SJ,Lopez DA,Gaidarenko O,Smith SR,McCrow JP,Gallaher SD,Podell S,Thompson M,Cook O,Morselli M,Jaroszewicz A,Allen EE,Allen AE,Merchant SS,Pellegrini M,Hildebrand M

    更新日期:2016-11-25 00:00:00

  • Modular systems metabolic engineering enables balancing of relevant pathways for l-histidine production with Corynebacterium glutamicum.

    abstract:Background:l-Histidine biosynthesis is embedded in an intertwined metabolic network which renders microbial overproduction of this amino acid challenging. This is reflected in the few available examples of histidine producers in literature. Since knowledge about the metabolic interplay is limited, we systematically per...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1410-2

    authors: Schwentner A,Feith A,Münch E,Stiefelmaier J,Lauer I,Favilli L,Massner C,Öhrlein J,Grund B,Hüser A,Takors R,Blombach B

    更新日期:2019-03-25 00:00:00

  • A complete annotation of the chromosomes of the cellulase producer Trichoderma reesei provides insights in gene clusters, their expression and reveals genes required for fitness.

    abstract:BACKGROUND:Investigations on a few eukaryotic model organisms showed that many genes are non-randomly distributed on chromosomes. In addition, chromosome ends frequently possess genes that are important for the fitness of the organisms. Trichoderma reesei is an industrial producer of enzymes for food, feed and biorefin...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0488-z

    authors: Druzhinina IS,Kopchinskiy AG,Kubicek EM,Kubicek CP

    更新日期:2016-03-29 00:00:00

  • The diversity of hydrogen-producing bacteria and methanogens within an in situ coal seam.

    abstract:Background:Biogenic and biogenic-thermogenic coalbed methane (CBM) are important energy reserves for unconventional natural gas. Thus, to investigate biogenic gas formation mechanisms, a series of fresh coal samples from several representative areas of China were analyzed to detect hydrogen-producing bacteria and metha...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1237-2

    authors: Su X,Zhao W,Xia D

    更新日期:2018-09-08 00:00:00

  • Toward facilitating microalgae cope with effluent from anaerobic digestion of kitchen waste: the art of agricultural phytohormones.

    abstract:BACKGROUND:Although numerous studies have used wastewater as substitutes to cultivate microalgae, most of them obtained weaker algal viability than standard media. Some studies demonstrated a promotion of phytohormones on algal growth in standard media. For exploiting a strategy to improve algal biomass accumulation in...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0759-3

    authors: Pei H,Jiang L,Hou Q,Yu Z

    更新日期:2017-03-24 00:00:00

  • Transcriptomic response to prolonged ethanol production in the cyanobacterium Synechocystis sp. PCC6803.

    abstract:BACKGROUND:The production of biofuels in photosynthetic microalgae and cyanobacteria is a promising alternative to the generation of fuels from fossil resources. To be economically competitive, producer strains need to be established that synthesize the targeted product at high yield and over a long time. Engineering c...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-7-21

    authors: Dienst D,Georg J,Abts T,Jakorew L,Kuchmina E,Börner T,Wilde A,Dühring U,Enke H,Hess WR

    更新日期:2014-02-06 00:00:00

  • Lipase immobilized on functionalized superparamagnetic few-layer graphene oxide as an efficient nanobiocatalyst for biodiesel production from Chlorella vulgaris bio-oil.

    abstract:Background:Microalgae, due to its well-recognized advantages have gained renewed interest as potentially good feedstock for biodiesel. Production of fatty acid methyl esters (FAMEs) as a type of biodiesel was carried out from Chlorella vulgaris bio-oil. Biodiesel was produced in the presence of nano-biocatalysts compos...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-01688-x

    authors: Nematian T,Shakeri A,Salehi Z,Saboury AA

    更新日期:2020-03-20 00:00:00

  • Improving L-arabinose utilization of pentose fermenting Saccharomyces cerevisiae cells by heterologous expression of L-arabinose transporting sugar transporters.

    abstract:BACKGROUND:Hydrolysates of plant biomass used for the production of lignocellulosic biofuels typically contain sugar mixtures consisting mainly of D-glucose and D-xylose, and minor amounts of L-arabinose. The yeast Saccharomyces cerevisiae is the preferred microorganism for the fermentative production of ethanol but is...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-4-38

    authors: Subtil T,Boles E

    更新日期:2011-10-12 00:00:00

  • Production of four Neurospora crassa lytic polysaccharide monooxygenases in Pichia pastoris monitored by a fluorimetric assay.

    abstract:UNLABELLED: BACKGROUND:Recent studies demonstrate that enzymes from the glycosyl hydrolase family 61 (GH61) show lytic polysaccharide monooxygenase (PMO) activity. Together with cellobiose dehydrogenase (CDH) an enzymatic system capable of oxidative cellulose cleavage is formed, which increases the efficiency of cellu...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-5-79

    authors: Kittl R,Kracher D,Burgstaller D,Haltrich D,Ludwig R

    更新日期:2012-10-26 00:00:00

  • Real-time understanding of lignocellulosic bioethanol fermentation by Raman spectroscopy.

    abstract:BACKGROUND:A substantial barrier to commercialization of lignocellulosic ethanol production is a lack of process specific sensors and associated control strategies that are essential for economic viability. Current sensors and analytical techniques require lengthy offline analysis or are easily fouled in situ. Raman sp...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-28

    authors: Ewanick SM,Thompson WJ,Marquardt BJ,Bura R

    更新日期:2013-02-20 00:00:00

  • Elucidation of the effect of ionic liquid pretreatment on rice husk via structural analyses.

    abstract:UNLABELLED: BACKGROUND:In the present study, three ionic liquids, namely 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc), and 1-ethyl-3-methylimidazolium diethyl phosphate ([EMIM]DEP), were used to partially dissolve rice husk, after which the cellulose were regenerated...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-5-67

    authors: Ang TN,Ngoh GC,Chua AS,Lee MG

    更新日期:2012-09-07 00:00:00

  • Structure-based directed evolution improves S. cerevisiae growth on xylose by influencing in vivo enzyme performance.

    abstract:Background:Efficient bioethanol production from hemicellulose feedstocks by Saccharomyces cerevisiae requires xylose utilization. Whereas S. cerevisiae does not metabolize xylose, engineered strains that express xylose isomerase can metabolize xylose by converting it to xylulose. For this, the type II xylose isomerase ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1643-0

    authors: Lee M,Rozeboom HJ,Keuning E,de Waal P,Janssen DB

    更新日期:2020-01-11 00:00:00

  • Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing.

    abstract:BACKGROUND:Renewable energy production is currently a major issue worldwide. Biogas is a promising renewable energy carrier as the technology of its production combines the elimination of organic waste with the formation of a versatile energy carrier, methane. In consequence of the complexity of the microbial communiti...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-5-41

    authors: Wirth R,Kovács E,Maróti G,Bagi Z,Rákhely G,Kovács KL

    更新日期:2012-07-12 00:00:00

  • Lipid production by the oleaginous yeast Yarrowia lipolytica using industrial by-products under different culture conditions.

    abstract:BACKGROUND:Microbial lipid production using renewable feedstock shows great promise for the biodiesel industry. RESULTS:In this study, the ability of a lipid-engineered Yarrowia lipolytica strain JMY4086 to produce lipids using molasses and crude glycerol under different oxygenation conditions and at different inoculu...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0286-z

    authors: Rakicka M,Lazar Z,Dulermo T,Fickers P,Nicaud JM

    更新日期:2015-07-25 00:00:00

  • Rapid in vivo lipid/carbohydrate quantification of single microalgal cell by Raman spectral imaging to reveal salinity-induced starch-to-lipid shift.

    abstract:BACKGROUND:Lipid/carbohydrate content and ratio are extremely important when engineering algal cells for liquid biofuel production. However, conventional methods for such determination and quantification are not only destructive and tedious, but also energy consuming and environment unfriendly. In this study, we first ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0691-y

    authors: Chiu LD,Ho SH,Shimada R,Ren NQ,Ozawa T

    更新日期:2017-01-03 00:00:00

  • Metabolic engineering of Pichia pastoris for production of isobutanol and isobutyl acetate.

    abstract:Background:Interests in renewable fuels have exploded in recent years as the serious effects of global climate change become apparent. Microbial production of high-energy fuels by economically efficient bioprocesses has emerged as an attractive alternative to the traditional production of transportation fuels. Here, we...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-1003-x

    authors: Siripong W,Wolf P,Kusumoputri TP,Downes JJ,Kocharin K,Tanapongpipat S,Runguphan W

    更新日期:2018-01-08 00:00:00

  • SSF of steam-pretreated wheat straw with the addition of saccharified or fermented wheat meal in integrated bioethanol production.

    abstract:BACKGROUND:Integration of second-generation (2G) bioethanol production with existing first-generation (1G) production may facilitate commercial production of ethanol from cellulosic material. Since 2G hydrolysates have a low sugar concentration and 1G streams often have to be diluted prior to fermentation, mixing of st...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-169

    authors: Erdei B,Hancz D,Galbe M,Zacchi G

    更新日期:2013-11-29 00:00:00

  • The extracellular endo-β-1,4-xylanase with multidomain from the extreme thermophile Caldicellulosiruptor lactoaceticus is specific for insoluble xylan degradation.

    abstract:Background:The extremely thermophilic bacterium Caldicellulosiruptor lactoaceticus can degrade and metabolize untreated lignocellulosic biomass containing xylan. The mechanism of the bacterium for degradation of insoluble xylan in untreated biomass has not been revealed. Results:In the present study, the only annotate...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1480-1

    authors: Jia X,Han Y

    更新日期:2019-06-08 00:00:00

  • Bamboo lignocellulose degradation by gut symbiotic microbiota of the bamboo snout beetle Cyrtotrachelus buqueti.

    abstract:Background:Gut symbiotic microbiota plays a critical role in nutrient supply, digestion, and absorption. The bamboo snout beetle, Cyrtotrachelus buqueti, a common pest of several bamboo species, exhibits high lignocellulolytic enzyme activity and contains various CAZyme genes. However, to date, no studies have evaluate...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1411-1

    authors: Luo C,Li Y,Chen Y,Fu C,Long W,Xiao X,Liao H,Yang Y

    更新日期:2019-04-01 00:00:00

  • An enclosed rotating floating photobioreactor (RFP) powered by flowing water for mass cultivation of photosynthetic microalgae.

    abstract:BACKGROUND:The design of photobioreactor (PBR) for outdoor mass cultivation of microalgae determines the distribution of solar irradiance among cells in the culture, mode of agitation, mass transfer efficacy, and energy consumption, thus determines the productivity of the system and the cost of production. In this stud...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0633-8

    authors: Huang JJ,Bunjamin G,Teo ES,Ng DB,Lee YK

    更新日期:2016-10-18 00:00:00

  • Bioconversion of biodiesel refinery waste in the bioemulsifier by Trichosporon mycotoxinivorans CLA2.

    abstract:BACKGROUND:The microbial bioemulsifiers was surface active compounds, are more effective in stabilizing oil-in-water emulsions. The yeasts have been isolated to produce bioemulsifiers from vegetable oils and industrial wastes. RESULTS:Trichosporon mycotoxinivorans CLA2 is bioemulsifier-producing yeast strain isolated ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-5-29

    authors: de Souza Monteiro A,Domingues VS,Souza MV,Lula I,Gonçalves DB,de Siqueira EP,Dos Santos VL

    更新日期:2012-05-06 00:00:00

  • Growth of Chlamydomonas reinhardtii in acetate-free medium when co-cultured with alginate-encapsulated, acetate-producing strains of Synechococcus sp. PCC 7002.

    abstract:BACKGROUND:The model alga Chlamydomonas reinhardtii requires acetate as a co-substrate for optimal production of lipids, and the addition of acetate to culture media has practical and economic implications for algal biofuel production. Here we demonstrate the growth of C. reinhardtii on acetate provided by mutant strai...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-014-0154-2

    authors: Therien JB,Zadvornyy OA,Posewitz MC,Bryant DA,Peters JW

    更新日期:2014-10-18 00:00:00

  • Reaction wood - a key cause of variation in cell wall recalcitrance in willow.

    abstract:UNLABELLED: BACKGROUND:The recalcitrance of lignocellulosic cell wall biomass to deconstruction varies greatly in angiosperms, yet the source of this variation remains unclear. Here, in eight genotypes of short rotation coppice willow (Salix sp.) variability of the reaction wood (RW) response and the impact of this va...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-5-83

    authors: Brereton NJ,Ray MJ,Shield I,Martin P,Karp A,Murphy RJ

    更新日期:2012-11-22 00:00:00

  • Comparative secretome analysis of Trichoderma asperellum S4F8 and Trichoderma reesei Rut C30 during solid-state fermentation on sugarcane bagasse.

    abstract:BACKGROUND:The lignocellulosic enzymes of Trichoderma species have received particular attention with regard to biomass conversion to biofuels, but the production cost of these enzymes remains a significant hurdle for their commercial application. In this study, we quantitatively compared the lignocellulolytic enzyme p...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-172

    authors: Marx IJ,van Wyk N,Smit S,Jacobson D,Viljoen-Bloom M,Volschenk H

    更新日期:2013-11-29 00:00:00