Genome and methylome of the oleaginous diatom Cyclotella cryptica reveal genetic flexibility toward a high lipid phenotype.

Abstract:

BACKGROUND:Improvement in the performance of eukaryotic microalgae for biofuel and bioproduct production is largely dependent on characterization of metabolic mechanisms within the cell. The marine diatom Cyclotella cryptica, which was originally identified in the Aquatic Species Program, is a promising strain of microalgae for large-scale production of biofuel and bioproducts, such as omega-3 fatty acids. RESULTS:We sequenced the nuclear genome and methylome of this oleaginous diatom to identify the genetic traits that enable substantial accumulation of triacylglycerol. The genome is comprised of highly methylated repetitive sequence, which does not significantly change under silicon starved lipid induction, and data further suggests the primary role of DNA methylation is to suppress DNA transposition. Annotation of pivotal glycolytic, lipid metabolism, and carbohydrate degradation processes reveal an expanded enzyme repertoire in C. cryptica that would allow for an increased metabolic capacity toward triacylglycerol production. Identification of previously unidentified genes, including those involved in carbon transport and chitin metabolism, provide potential targets for genetic manipulation of carbon flux to further increase its lipid phenotype. New genetic tools were developed, bringing this organism on a par with other microalgae in terms of genetic manipulation and characterization approaches. CONCLUSIONS:Functional annotation and detailed cross-species comparison of key carbon rich processes in C. cryptica highlights the importance of enzymatic subcellular compartmentation for regulation of carbon flux, which is often overlooked in photosynthetic microeukaryotes. The availability of the genome sequence, as well as advanced genetic manipulation tools enable further development of this organism for deployment in large-scale production systems.

journal_name

Biotechnol Biofuels

authors

Traller JC,Cokus SJ,Lopez DA,Gaidarenko O,Smith SR,McCrow JP,Gallaher SD,Podell S,Thompson M,Cook O,Morselli M,Jaroszewicz A,Allen EE,Allen AE,Merchant SS,Pellegrini M,Hildebrand M

doi

10.1186/s13068-016-0670-3

subject

Has Abstract

pub_date

2016-11-25 00:00:00

pages

258

issn

1754-6834

pii

670

journal_volume

9

pub_type

杂志文章
  • The vital role of citrate buffer in acetone-butanol-ethanol (ABE) fermentation using corn stover and high-efficient product recovery by vapor stripping-vapor permeation (VSVP) process.

    abstract:BACKGROUND:Butanol is not only an important solvent and chemical intermediate in food and pharmaceutical industries, but also considered as an advanced biofuel. Recently, there have been resurging interests in producing biobutanol especially using low-cost lignocellulosic biomass, but the process still suffers from low...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0566-2

    authors: Xue C,Wang Z,Wang S,Zhang X,Chen L,Mu Y,Bai F

    更新日期:2016-07-19 00:00:00

  • Metabolic engineering of Clostridium beijerinckii to improve glycerol metabolism and furfural tolerance.

    abstract:Background:Inefficient utilization of glycerol by Clostridium beijerinckii (Cb) is a major impediment to adopting glycerol metabolism as a strategy for increasing NAD(P)H regeneration, which would in turn, alleviate the toxicity of lignocellulose-derived microbial inhibitory compounds (LDMICs, e.g., furfural), and impr...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1388-9

    authors: Agu CV,Ujor V,Ezeji TC

    更新日期:2019-03-09 00:00:00

  • Clostridium acetobutylicum grows vegetatively in a biofilm rich in heteropolysaccharides and cytoplasmic proteins.

    abstract:Background:Biofilms are cell communities wherein cells are embedded in a self-produced extracellular polymeric substances (EPS). The biofilm of Clostridium acetobutylicum confers the cells superior phenotypes and has been extensively exploited to produce a variety of liquid biofuels and bulk chemicals. However, little ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1316-4

    authors: Liu D,Yang Z,Chen Y,Zhuang W,Niu H,Wu J,Ying H

    更新日期:2018-11-20 00:00:00

  • Characterization and engineering of a dual-function diacylglycerol acyltransferase in the oleaginous marine diatom Phaeodactylum tricornutum.

    abstract:Background:Photosynthetic oleaginous microalgae are promising feedstocks for biofuels. Acyl-CoA:diacylglycerol acyltransferases (DGATs) represent rich sources for engineering microalgal lipid production. The principal activity of DGATs has been defined as a single-function enzyme catalyzing the esterification of diacyl...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1029-8

    authors: Cui Y,Zhao J,Wang Y,Qin S,Lu Y

    更新日期:2018-02-09 00:00:00

  • Rapid in vivo lipid/carbohydrate quantification of single microalgal cell by Raman spectral imaging to reveal salinity-induced starch-to-lipid shift.

    abstract:BACKGROUND:Lipid/carbohydrate content and ratio are extremely important when engineering algal cells for liquid biofuel production. However, conventional methods for such determination and quantification are not only destructive and tedious, but also energy consuming and environment unfriendly. In this study, we first ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0691-y

    authors: Chiu LD,Ho SH,Shimada R,Ren NQ,Ozawa T

    更新日期:2017-01-03 00:00:00

  • Production of four Neurospora crassa lytic polysaccharide monooxygenases in Pichia pastoris monitored by a fluorimetric assay.

    abstract:UNLABELLED: BACKGROUND:Recent studies demonstrate that enzymes from the glycosyl hydrolase family 61 (GH61) show lytic polysaccharide monooxygenase (PMO) activity. Together with cellobiose dehydrogenase (CDH) an enzymatic system capable of oxidative cellulose cleavage is formed, which increases the efficiency of cellu...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-5-79

    authors: Kittl R,Kracher D,Burgstaller D,Haltrich D,Ludwig R

    更新日期:2012-10-26 00:00:00

  • Allelopathy as a potential strategy to improve microalgae cultivation.

    abstract::One of the main obstacles for continuous productivity in microalgae cultivation is the presence of biological contaminants capable of eliminating large numbers of cells in a matter of days or even hours. However, a number of strategies are being used to combat and prevent contamination in microalgae cultivation. These...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-152

    authors: Bacellar Mendes LB,Vermelho AB

    更新日期:2013-10-21 00:00:00

  • Enhancing oil production in Arabidopsis through expression of a ketoacyl-ACP synthase domain of the PUFA synthase from Thraustochytrium.

    abstract:Background:Plant seed oil is an important bioresource for human food and animal feed, as well as industrial bioproducts. Therefore, increasing oil content in seeds has been one of the primary targets in the breeding programs of oilseed crops. Thraustochytrium is a marine protist that can produce a high level of very lo...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1514-8

    authors: Xie X,Meesapyodsuk D,Qiu X

    更新日期:2019-06-29 00:00:00

  • A truncated form of the Carbon catabolite repressor 1 increases cellulase production in Trichoderma reesei.

    abstract:BACKGROUND:Rut-C30 is a cellulase-hyperproducing Trichoderma reesei strain and, consequently, became the ancestor of most industry strains used in the production of plant cell wall-degrading enzymes, in particular cellulases. Due to three rounds of undirected mutagenesis its genetic background differs from the wild-typ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-014-0129-3

    authors: Mello-de-Sousa TM,Gorsche R,Rassinger A,Poças-Fonseca MJ,Mach RL,Mach-Aigner AR

    更新日期:2014-09-11 00:00:00

  • Optimization of the dilute maleic acid pretreatment of wheat straw.

    abstract:BACKGROUND:In this study, the dilute maleic acid pretreatment of wheat straw is optimized, using pretreatment time, temperature and maleic acid concentration as design variables. A central composite design was applied to the experimental set up. The response factors used in this study are: (1) glucose benefits from imp...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-2-31

    authors: Kootstra AM,Beeftink HH,Scott EL,Sanders JP

    更新日期:2009-12-21 00:00:00

  • High cell density production of multimethyl-branched long-chain esters in Escherichia coli and determination of their physicochemical properties.

    abstract:BACKGROUND:Microbial synthesis of oleochemicals derived from native fatty acid (FA) metabolism has presented significant advances in recent years. Even so, native FA biosynthetic pathways often provide a narrow variety of usually linear hydrocarbons, thus yielding end products with limited structural diversity. To over...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0631-x

    authors: Menendez-Bravo S,Roulet J,Sabatini M,Comba S,Dunn R,Gramajo H,Arabolaza A

    更新日期:2016-10-14 00:00:00

  • Metabolome analysis reveals a role for glyceraldehyde 3-phosphate dehydrogenase in the inhibition of C. thermocellum by ethanol.

    abstract:Background:Clostridium thermocellum is a promising microorganism for conversion of cellulosic biomass to biofuel, without added enzymes; however, the low ethanol titer produced by strains developed thus far is an obstacle to industrial application. Results:Here, we analyzed changes in the relative concentration of int...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0961-3

    authors: Tian L,Perot SJ,Stevenson D,Jacobson T,Lanahan AA,Amador-Noguez D,Olson DG,Lynd LR

    更新日期:2017-11-30 00:00:00

  • Metabolic engineering of Bacillus amyloliquefaciens for enhanced production of S-adenosylmethionine by coupling of an engineered S-adenosylmethionine pathway and the tricarboxylic acid cycle.

    abstract:Background:S-Adenosylmethionine (SAM) is a critical cofactor involved in many biochemical reactions. However, the low fermentation titer of SAM in methionine-free medium hampers commercial-scale production. The SAM synthesis pathway is specially related to the tricarboxylic acid (TCA) cycle in Bacillus amyloliquefacien...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1554-0

    authors: Ruan L,Li L,Zou D,Jiang C,Wen Z,Chen S,Deng Y,Wei X

    更新日期:2019-09-09 00:00:00

  • Single-step bioconversion of lignocellulose to hydrogen using novel moderately thermophilic bacteria.

    abstract:BACKGROUND:Consolidated bioprocessing (CBP) of lignocellulosic biomass to hydrogen offers great potential for lower cost and higher efficiency compared to processes featuring dedicated cellulase production. Current studies on CBP-based hydrogen production mainly focus on using the thermophilic cellulolytic bacterium Cl...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-7-82

    authors: Cao GL,Zhao L,Wang AJ,Wang ZY,Ren NQ

    更新日期:2014-06-03 00:00:00

  • Engineering Geobacillus thermoglucosidasius for direct utilisation of holocellulose from wheat straw.

    abstract:Background:A consolidated bioprocessing (CBP), where lignocellulose is converted into the desired product(s) in a single fermentative step without the addition of expensive degradative enzymes, represents the ideal solution of renewable routes to chemicals and fuels. Members of the genus Geobacillus are able to grow at...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1540-6

    authors: Bashir Z,Sheng L,Anil A,Lali A,Minton NP,Zhang Y

    更新日期:2019-08-20 00:00:00

  • The extracellular endo-β-1,4-xylanase with multidomain from the extreme thermophile Caldicellulosiruptor lactoaceticus is specific for insoluble xylan degradation.

    abstract:Background:The extremely thermophilic bacterium Caldicellulosiruptor lactoaceticus can degrade and metabolize untreated lignocellulosic biomass containing xylan. The mechanism of the bacterium for degradation of insoluble xylan in untreated biomass has not been revealed. Results:In the present study, the only annotate...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1480-1

    authors: Jia X,Han Y

    更新日期:2019-06-08 00:00:00

  • Understanding the structural characteristics of water-soluble phenolic compounds from four pretreatments of corn stover and their inhibitory effects on enzymatic hydrolysis and fermentation.

    abstract:Background:For bioethanol production from lignocellulosic biomass, phenolics derived from pretreatment have been generally considered as highly inhibitory towards enzymatic hydrolysis and fermentation. As phenolics are produced from lignin degradation during pretreatment, it is likely that the pretreatment will exert a...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-01686-z

    authors: Chen X,Zhai R,Li Y,Yuan X,Liu ZH,Jin M

    更新日期:2020-03-11 00:00:00

  • Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments.

    abstract:: The production of cellulosic ethanol from biomass is considered a promising alternative to reliance on diminishing supplies of fossil fuels, providing a sustainable option for fuels production in an environmentally compatible manner. The conversion of lignocellulosic biomass to biofuels through a biological route usu...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-15

    authors: Pu Y,Hu F,Huang F,Davison BH,Ragauskas AJ

    更新日期:2013-01-28 00:00:00

  • Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions.

    abstract:BACKGROUND:Decomposition of biomass for biogas production can be practiced under wet and dry fermentation conditions. In contrast to the dry fermentation technology, wet fermentation is characterized by a high liquid content and a relatively low total solid content. In this study, the composition and functional potenti...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-014-0193-8

    authors: Stolze Y,Zakrzewski M,Maus I,Eikmeyer F,Jaenicke S,Rottmann N,Siebner C,Pühler A,Schlüter A

    更新日期:2015-02-08 00:00:00

  • Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates.

    abstract:: A range of lignocellulosic feedstocks (including agricultural, softwood and hardwood substrates) were pretreated with either sulfur dioxide-catalyzed steam or an ethanol organosolv procedure to try to establish a reliable assessment of the factors governing the minimum protein loading that could be used to achieve ef...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-4-3

    authors: Arantes V,Saddler JN

    更新日期:2011-02-10 00:00:00

  • Disruption of zinc finger DNA binding domain in catabolite repressor Mig1 increases growth rate, hyphal branching, and cellulase expression in hypercellulolytic fungus Penicillium funiculosum NCIM1228.

    abstract:Background:There is an urgent requirement for second-generation bio-based industries for economical yet efficient enzymatic cocktail to convert diverse cellulosic biomass into fermentable sugars. In our previous study, secretome of Penicillium funiculosum NCIM1228 showed high commercial potential by exhibiting high bio...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1011-5

    authors: Randhawa A,Ogunyewo OA,Eqbal D,Gupta M,Yazdani SS

    更新日期:2018-01-25 00:00:00

  • Astaxanthin overproduction in yeast by strain engineering and new gene target uncovering.

    abstract:Background:Astaxanthin is a natural carotenoid pigment with tremendous antioxidant activity and great commercial value. Microbial production of astaxanthin via metabolic engineering has become a promising alternative. Although great efforts have been conducted by tuning the heterologous modules and precursor pools, the...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1227-4

    authors: Jin J,Wang Y,Yao M,Gu X,Li B,Liu H,Ding M,Xiao W,Yuan Y

    更新日期:2018-08-23 00:00:00

  • Scale-up and evaluation of high solid ionic liquid pretreatment and enzymatic hydrolysis of switchgrass.

    abstract:BACKGROUND:Ionic liquid (IL) pretreatment is receiving significant attention as a potential process that enables fractionation of lignocellulosic biomass and produces high yields of fermentable sugars suitable for the production of renewable fuels. However, successful optimization and scale up of IL pretreatment involv...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-154

    authors: Li C,Tanjore D,He W,Wong J,Gardner JL,Sale KL,Simmons BA,Singh S

    更新日期:2013-10-25 00:00:00

  • Enhanced rates of enzymatic saccharification and catalytic synthesis of biofuel substrates in gelatinized cellulose generated by trifluoroacetic acid.

    abstract:Background:The crystallinity of cellulose is a principal factor limiting the efficient hydrolysis of biomass to fermentable sugars or direct catalytic conversion to biofuel components. We evaluated the impact of TFA-induced gelatinization of crystalline cellulose on enhancement of enzymatic digestion and catalytic conv...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0999-2

    authors: Shiga TM,Xiao W,Yang H,Zhang X,Olek AT,Donohoe BS,Liu J,Makowski L,Hou T,McCann MC,Carpita NC,Mosier NS

    更新日期:2017-12-27 00:00:00

  • Awakening the endogenous Leloir pathway for efficient galactose utilization by Yarrowia lipolytica.

    abstract:BACKGROUND:Production of valuable metabolites by Yarrowia lipolytica using renewable raw materials is of major interest for sustainable food and energy. Galactose is a monosaccharide found in galactomannans, hemicelluloses, gums, and pectins. RESULTS:Yarrowia lipolytica was found to express all the Leloir pathway gene...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0370-4

    authors: Lazar Z,Gamboa-Meléndez H,Le Coq AM,Neuvéglise C,Nicaud JM

    更新日期:2015-11-25 00:00:00

  • Metabolic engineering Escherichia coli for efficient production of icariside D2.

    abstract:Background:Icariside D2 is a plant-derived natural glycoside with pharmacological activities of inhibiting angiotensin-converting enzyme and killing leukemia cancer cells. Production of icariside D2 by plant extraction and chemical synthesis is inefficient and environmentally unfriendly. Microbial cell factory offers a...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1601-x

    authors: Liu X,Li L,Liu J,Qiao J,Zhao GR

    更新日期:2019-11-06 00:00:00

  • A new method to evaluate temperature vs. pH activity profiles for biotechnological relevant enzymes.

    abstract:BACKGROUND:Glycoside hydrolases are important for various industrial and scientific applications. Determination of their temperature as well as pH optima and range is crucial to evaluate whether an enzyme is suitable for application in a biotechnological process. These basic characteristics of enzymes are generally det...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0923-9

    authors: Herlet J,Kornberger P,Roessler B,Glanz J,Schwarz WH,Liebl W,Zverlov VV

    更新日期:2017-10-11 00:00:00

  • Deciphering lignocellulose deconstruction by the white rot fungus Irpex lacteus based on genomic and transcriptomic analyses.

    abstract:Background:Irpex lacteus is one of the most potent white rot fungi for biological pretreatment of lignocellulose for second biofuel production. To elucidate the underlying molecular mechanism involved in lignocellulose deconstruction, genomic and transcriptomic analyses were carried out for I. lacteus CD2 grown in subm...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1060-9

    authors: Qin X,Su X,Luo H,Ma R,Yao B,Ma F

    更新日期:2018-03-02 00:00:00

  • Presence does not imply activity: DNA and RNA patterns differ in response to salt perturbation in anaerobic digestion.

    abstract:BACKGROUND:The microbial community in anaerobic digestion is mainly monitored by means of DNA-based methods. This may lead to incorrect interpretation of the community parameters, because microbial abundance does not necessarily reflect activity. In this research, the difference between microbial community response on ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0652-5

    authors: De Vrieze J,Regueiro L,Props R,Vilchez-Vargas R,Jáuregui R,Pieper DH,Lema JM,Carballa M

    更新日期:2016-11-09 00:00:00

  • Characterization of a novel sugar transporter involved in sugarcane bagasse degradation in Trichoderma reesei.

    abstract:Background:Trichoderma reesei is a saprophytic fungus implicated in the degradation of polysaccharides present in the cell wall of plants. T. reesei has been recognized as the most important industrial fungus that secretes and produces cellulase enzymes that are employed in the production of second generation bioethano...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1084-1

    authors: Nogueira KMV,de Paula RG,Antoniêto ACC,Dos Reis TF,Carraro CB,Silva AC,Almeida F,Rechia CGV,Goldman GH,Silva RN

    更新日期:2018-04-02 00:00:00