Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates.

Abstract:

: A range of lignocellulosic feedstocks (including agricultural, softwood and hardwood substrates) were pretreated with either sulfur dioxide-catalyzed steam or an ethanol organosolv procedure to try to establish a reliable assessment of the factors governing the minimum protein loading that could be used to achieve efficient hydrolysis. A statistical design approach was first used to define what might constitute the minimum protein loading (cellulases and β-glucosidase) that could be used to achieve efficient saccharification (defined as at least 70% glucan conversion) of the pretreated substrates after 72 hours of hydrolysis. The likely substrate factors that limit cellulose availability/accessibility were assessed, and then compared with the optimized minimum amounts of protein used to obtain effective hydrolysis. The optimized minimum protein loadings to achieve efficient hydrolysis of seven pretreated substrates ranged between 18 and 63 mg protein per gram of glucan. Within the similarly pretreated group of lignocellulosic feedstocks, the agricultural residues (corn stover and corn fiber) required significantly lower protein loadings to achieve efficient hydrolysis than did the pretreated woody biomass (poplar, douglas fir and lodgepole pine). Regardless of the substantial differences in the source, structure and chemical composition of the feedstocks, and the difference in the pretreatment technology used, the protein loading required to achieve efficient hydrolysis of lignocellulosic substrates was strongly dependent on the accessibility of the cellulosic component of each of the substrates. We found that cellulose-rich substrates with highly accessible cellulose, as assessed by the Simons' stain method, required a lower protein loading per gram of glucan to obtain efficient hydrolysis compared with substrates containing less accessible cellulose. These results suggest that the rate-limiting step during hydrolysis is not the catalytic cleavage of the cellulose chains per se, but rather the limited accessibility of the enzymes to the cellulose chains due to the physical structure of the cellulosic substrate.

journal_name

Biotechnol Biofuels

authors

Arantes V,Saddler JN

doi

10.1186/1754-6834-4-3

subject

Has Abstract

pub_date

2011-02-10 00:00:00

pages

3

issn

1754-6834

pii

1754-6834-4-3

journal_volume

4

pub_type

杂志文章
  • Metabolic engineering of Pichia pastoris for production of isobutanol and isobutyl acetate.

    abstract:Background:Interests in renewable fuels have exploded in recent years as the serious effects of global climate change become apparent. Microbial production of high-energy fuels by economically efficient bioprocesses has emerged as an attractive alternative to the traditional production of transportation fuels. Here, we...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-1003-x

    authors: Siripong W,Wolf P,Kusumoputri TP,Downes JJ,Kocharin K,Tanapongpipat S,Runguphan W

    更新日期:2018-01-08 00:00:00

  • Metabolic engineering of Clostridium beijerinckii to improve glycerol metabolism and furfural tolerance.

    abstract:Background:Inefficient utilization of glycerol by Clostridium beijerinckii (Cb) is a major impediment to adopting glycerol metabolism as a strategy for increasing NAD(P)H regeneration, which would in turn, alleviate the toxicity of lignocellulose-derived microbial inhibitory compounds (LDMICs, e.g., furfural), and impr...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1388-9

    authors: Agu CV,Ujor V,Ezeji TC

    更新日期:2019-03-09 00:00:00

  • Reaction wood - a key cause of variation in cell wall recalcitrance in willow.

    abstract:UNLABELLED: BACKGROUND:The recalcitrance of lignocellulosic cell wall biomass to deconstruction varies greatly in angiosperms, yet the source of this variation remains unclear. Here, in eight genotypes of short rotation coppice willow (Salix sp.) variability of the reaction wood (RW) response and the impact of this va...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-5-83

    authors: Brereton NJ,Ray MJ,Shield I,Martin P,Karp A,Murphy RJ

    更新日期:2012-11-22 00:00:00

  • Early warning indicators for mesophilic anaerobic digestion of corn stalk: a combined experimental and simulation approach.

    abstract:Background:Monitoring and providing early warning are essential operations in the anaerobic digestion (AD) process. However, there are still several challenges for identifying the early warning indicators and their thresholds. One particular challenge is that proposed strategies are only valid under certain conditions....

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1442-7

    authors: Wu Y,Kovalovszki A,Pan J,Lin C,Liu H,Duan N,Angelidaki I

    更新日期:2019-05-03 00:00:00

  • Toward facilitating microalgae cope with effluent from anaerobic digestion of kitchen waste: the art of agricultural phytohormones.

    abstract:BACKGROUND:Although numerous studies have used wastewater as substitutes to cultivate microalgae, most of them obtained weaker algal viability than standard media. Some studies demonstrated a promotion of phytohormones on algal growth in standard media. For exploiting a strategy to improve algal biomass accumulation in...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0759-3

    authors: Pei H,Jiang L,Hou Q,Yu Z

    更新日期:2017-03-24 00:00:00

  • Combined resistance to oxidative stress and reduced antenna size enhance light-to-biomass conversion efficiency in Chlorella vulgaris cultures.

    abstract:Background:Microalgae are efficient producers of lipid-rich biomass, making them a key component in developing a sustainable energy source, and an alternative to fossil fuels. Chlorella species are of special interest because of their fast growth rate in photobioreactors. However, biological constraints still cast a si...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1566-9

    authors: Dall'Osto L,Cazzaniga S,Guardini Z,Barera S,Benedetti M,Mannino G,Maffei ME,Bassi R

    更新日期:2019-09-16 00:00:00

  • Metabolome analysis reveals a role for glyceraldehyde 3-phosphate dehydrogenase in the inhibition of C. thermocellum by ethanol.

    abstract:Background:Clostridium thermocellum is a promising microorganism for conversion of cellulosic biomass to biofuel, without added enzymes; however, the low ethanol titer produced by strains developed thus far is an obstacle to industrial application. Results:Here, we analyzed changes in the relative concentration of int...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0961-3

    authors: Tian L,Perot SJ,Stevenson D,Jacobson T,Lanahan AA,Amador-Noguez D,Olson DG,Lynd LR

    更新日期:2017-11-30 00:00:00

  • Transcriptomic response to prolonged ethanol production in the cyanobacterium Synechocystis sp. PCC6803.

    abstract:BACKGROUND:The production of biofuels in photosynthetic microalgae and cyanobacteria is a promising alternative to the generation of fuels from fossil resources. To be economically competitive, producer strains need to be established that synthesize the targeted product at high yield and over a long time. Engineering c...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-7-21

    authors: Dienst D,Georg J,Abts T,Jakorew L,Kuchmina E,Börner T,Wilde A,Dühring U,Enke H,Hess WR

    更新日期:2014-02-06 00:00:00

  • Stochastic techno-economic analysis of alcohol-to-jet fuel production.

    abstract:BACKGROUND:Alcohol-to-jet (ATJ) is one of the technical feasible biofuel technologies. It produces jet fuel from sugary, starchy, and lignocellulosic biomass, such as sugarcane, corn grain, and switchgrass, via fermentation of sugars to ethanol or other alcohols. This study assesses the ATJ biofuel production pathway f...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0702-7

    authors: Yao G,Staples MD,Malina R,Tyner WE

    更新日期:2017-01-19 00:00:00

  • Improved lipid production via fatty acid biosynthesis and free fatty acid recycling in engineered Synechocystis sp. PCC 6803.

    abstract:Background:Cyanobacteria are potential sources for third generation biofuels. Their capacity for biofuel production has been widely improved using metabolically engineered strains. In this study, we employed metabolic engineering design with target genes involved in selected processes including the fatty acid synthesis...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1349-8

    authors: Eungrasamee K,Miao R,Incharoensakdi A,Lindblad P,Jantaro S

    更新日期:2019-01-04 00:00:00

  • Microbial effects of part-stream low-frequency ultrasonic pretreatment on sludge anaerobic digestion as revealed by high-throughput sequencing-based metagenomics and metatranscriptomics.

    abstract:Background:Part-stream low-frequency ultrasound (LFUS) was one of the common practices for sludge disintegration in full-scale anaerobic digestion (AD) facilities. However, the effectiveness of part-stream LFUS treatment and its effect on AD microbiome have not been fully elucidated. Methods:Here we testified the effe...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1042-y

    authors: Xia Y,Yang C,Zhang T

    更新日期:2018-02-21 00:00:00

  • Transparent polyvinyl-alcohol cryogel as immobilisation matrix for continuous biohydrogen production by phototrophic bacteria.

    abstract:Background:Phototrophic purple non-sulfur bacteria (PNSB) have gained attention for their ability to produce a valuable clean energy source in the form biohydrogen via photofermentation of a wide variety of organic wastes. For maturation of these phototrophic bioprocesses towards commercial feasibility, development of ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-01743-7

    authors: du Toit JP,Pott RWM

    更新日期:2020-06-09 00:00:00

  • Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste.

    abstract:: The considerable increase in biodiesel production worldwide in the last 5 years resulted in a stoichiometric increased coproduction of crude glycerol. As an excess of crude glycerol has been produced, its value on market was reduced and it is becoming a "waste-stream" instead of a valuable "coproduct". The developmen...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-5-48

    authors: Almeida JR,Fávaro LC,Quirino BF

    更新日期:2012-07-18 00:00:00

  • Quantitative visualization of subcellular lignocellulose revealing the mechanism of alkali pretreatment to promote methane production of rice straw.

    abstract:Background:As a renewable carbon source, biomass energy not only helps in resolving the management problems of lignocellulosic wastes, but also helps to alleviate the global climate change by controlling environmental pollution raised by their generation on a large scale. However, the bottleneck problem of extensive pr...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-1648-8

    authors: Li X,Sha J,Xia Y,Sheng K,Liu Y,He Y

    更新日期:2020-01-17 00:00:00

  • What cell wall components are the best indicators for Miscanthus digestibility and conversion to ethanol following variable pretreatments?

    abstract:Background:Energy crops including Miscanthus provide a storable, portable energy source which can be used to complement a wide range of products and energy generation systems. Miscanthus is predominantly used in Europe as a combustion material for electricity generation but also has the potential for biochemical conver...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1066-3

    authors: Adams JMM,Winters AL,Hodgson EM,Gallagher JA

    更新日期:2018-03-14 00:00:00

  • Integrated analysis of hydrothermal flow through pretreatment.

    abstract:UNLABELLED: BACKGROUND:The impact of hydrothermal flowthrough (FT) pretreatment severity on pretreatment and solubilization performance metrics was evaluated for three milled feedstocks (corn stover, bagasse, and poplar) and two conversion systems (simultaneous saccharification and fermentation using yeast and fungal ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-5-49

    authors: Archambault-Leger V,Shao X,Lynd LR

    更新日期:2012-07-19 00:00:00

  • Butanol production from laccase-pretreated brewer's spent grain.

    abstract:Background:Beer is the most popular alcoholic beverage worldwide. In the manufacture of beer, various by-products and residues are generated, and the most abundant (85% of total by-products) are spent grains. Thanks to its high (hemi)cellulose content (about 50% w/w dry weight), this secondary raw material is attractiv...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1383-1

    authors: Giacobbe S,Piscitelli A,Raganati F,Lettera V,Sannia G,Marzocchella A,Pezzella C

    更新日期:2019-03-05 00:00:00

  • Production of xylooligosaccharides and monosaccharides from poplar by a two-step acetic acid and peroxide/acetic acid pretreatment.

    abstract:Background:Populus (poplar) tree species including hybrid varieties are considered as promising biomass feedstock for biofuels and biochemicals production due to their fast growing, short vegetative cycle, and widely distribution. In this work, poplar was pretreated with acetic acid (AC) to produce xylooligosaccharides...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1423-x

    authors: Wen P,Zhang T,Wang J,Lian Z,Zhang J

    更新日期:2019-04-15 00:00:00

  • Dcm methylation is detrimental to plasmid transformation in Clostridium thermocellum.

    abstract:UNLABELLED: BACKGROUND:Industrial production of biofuels and other products by cellulolytic microorganisms is of interest but hindered by the nascent state of genetic tools. Although a genetic system for Clostridium thermocellum DSM1313 has recently been developed, available methods achieve relatively low efficiency a...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-5-30

    authors: Guss AM,Olson DG,Caiazza NC,Lynd LR

    更新日期:2012-05-06 00:00:00

  • Characterization of a glucose-tolerant β-glucosidase from Anoxybacillus sp. DT3-1.

    abstract:BACKGROUND:In general, biofuel production involves biomass pretreatment and enzymatic saccharification, followed by the subsequent sugar conversion to biofuel via fermentation. The crucial step in the production of biofuel from biomass is the enzymatic saccharification. Many of the commercial cellulase enzyme cocktails...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0587-x

    authors: Chan CS,Sin LL,Chan KG,Shamsir MS,Manan FA,Sani RK,Goh KM

    更新日期:2016-08-22 00:00:00

  • Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing.

    abstract:BACKGROUND:Renewable energy production is currently a major issue worldwide. Biogas is a promising renewable energy carrier as the technology of its production combines the elimination of organic waste with the formation of a versatile energy carrier, methane. In consequence of the complexity of the microbial communiti...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-5-41

    authors: Wirth R,Kovács E,Maróti G,Bagi Z,Rákhely G,Kovács KL

    更新日期:2012-07-12 00:00:00

  • High concentrations of dried sorghum stalks as a biomass feedstock for single cell oil production by Rhodosporidium toruloides.

    abstract:BACKGROUND:Environmental crisis and concerns for energy security have made the research for renewable fuels that will substitute the usage of fossil fuels an important priority. Biodiesel is a potential substitute for petroleum, but its feasibility is hindered by the utilization of edible vegetable oil as raw material,...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-014-0190-y

    authors: Matsakas L,Bonturi N,Miranda EA,Rova U,Christakopoulos P

    更新日期:2015-01-22 00:00:00

  • Increased drought tolerance in plants engineered for low lignin and low xylan content.

    abstract:Background:We previously developed several strategies to engineer plants to produce cost-efficient biofuels from plant biomass. Engineered Arabidopsis plants with low xylan and lignin content showed normal growth and improved saccharification efficiency under standard growth conditions. However, it remains to be determ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1196-7

    authors: Yan J,Aznar A,Chalvin C,Birdseye DS,Baidoo EEK,Eudes A,Shih PM,Loqué D,Zhang A,Scheller HV

    更新日期:2018-07-18 00:00:00

  • Lytic polysaccharide monooxygenases and other oxidative enzymes are abundantly secreted by Aspergillus nidulans grown on different starches.

    abstract:BACKGROUND:Starch is the second most abundant plant-derived biomass and a major feedstock in non-food industrial applications and first generation biofuel production. In contrast to lignocellulose, detailed insight into fungal degradation of starch is currently lacking. This study explores the secretomes of Aspergillus...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0604-0

    authors: Nekiunaite L,Arntzen MØ,Svensson B,Vaaje-Kolstad G,Abou Hachem M

    更新日期:2016-09-01 00:00:00

  • Selecting β-glucosidases to support cellulases in cellulose saccharification.

    abstract:BACKGROUND:Enzyme end-product inhibition is a major challenge in the hydrolysis of lignocellulose at a high dry matter consistency. β-glucosidases (BGs) hydrolyze cellobiose into two molecules of glucose, thereby relieving the product inhibition of cellobiohydrolases (CBHs). However, BG inhibition by glucose will event...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-105

    authors: Teugjas H,Väljamäe P

    更新日期:2013-07-24 00:00:00

  • Generation of random mutants to improve light-use efficiency of Nannochloropsis gaditana cultures for biofuel production.

    abstract:BACKGROUND:The productivity of an algal culture depends on how efficiently it converts sunlight into biomass and lipids. Wild-type algae in their natural environment evolved to compete for light energy and maximize individual cell growth; however, in a photobioreactor, global productivity should be maximized. Improving...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0337-5

    authors: Perin G,Bellan A,Segalla A,Meneghesso A,Alboresi A,Morosinotto T

    更新日期:2015-09-25 00:00:00

  • Electron balancing under different sink conditions reveals positive effects on photon efficiency and metabolic activity of Synechocystis sp. PCC 6803.

    abstract:Background:Cyanobacteria are ideal model organisms to exploit photosynthetically derived electrons or fixed carbon for the biotechnological synthesis of high value compounds and energy carriers. Much effort is spent on the rational design of heterologous pathways to produce value-added chemicals. Much less focus is dra...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1378-y

    authors: Grund M,Jakob T,Wilhelm C,Bühler B,Schmid A

    更新日期:2019-02-27 00:00:00

  • Leveraging transcription factors to speed cellobiose fermentation by Saccharomyces cerevisiae.

    abstract:BACKGROUND:Saccharomyces cerevisiae, a key organism used for the manufacture of renewable fuels and chemicals, has been engineered to utilize non-native sugars derived from plant cell walls, such as cellobiose and xylose. However, the rates and efficiencies of these non-native sugar fermentations pale in comparison wit...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-014-0126-6

    authors: Lin Y,Chomvong K,Acosta-Sampson L,Estrela R,Galazka JM,Kim SR,Jin YS,Cate JH

    更新日期:2014-08-27 00:00:00

  • Reduced use of phosphorus and water in sequential dark fermentation and anaerobic digestion of wheat straw and the application of ensiled steam-pretreated lucerne as a macronutrient provider in anaerobic digestion.

    abstract:Background:Current EU directives demand increased use of renewable fuels in the transportation sector but restrict governmental support for production of biofuels produced from crops. The use of intercropped lucerne and wheat may comply with the directives. In the current study, the combination of ensiled lucerne (Medi...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1280-z

    authors: Byrne E,Kovacs K,van Niel EWJ,Willquist K,Svensson SE,Kreuger E

    更新日期:2018-10-11 00:00:00

  • How does technology pathway choice influence economic viability and environmental impacts of lignocellulosic biorefineries?

    abstract:Background:The need for liquid fuels in the transportation sector is increasing, and it is essential to develop industrially sustainable processes that simultaneously address the tri-fold sustainability metrics of technological feasibility, economic viability, and environmental impacts. Biorefineries based on lignocell...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0959-x

    authors: Rajendran K,Murthy GS

    更新日期:2017-11-14 00:00:00