Toward facilitating microalgae cope with effluent from anaerobic digestion of kitchen waste: the art of agricultural phytohormones.

Abstract:

BACKGROUND:Although numerous studies have used wastewater as substitutes to cultivate microalgae, most of them obtained weaker algal viability than standard media. Some studies demonstrated a promotion of phytohormones on algal growth in standard media. For exploiting a strategy to improve algal biomass accumulation in effluent from anaerobic digestion of kitchen waste (ADE-KW), the agricultural phytohormones gibberellin, indole-3-acetic acid, and brassinolide (GIB) were applied to Chlorella SDEC-11 and Scenedesmus SDEC-13 at different stages of algal growth. Previous studies have demonstrated a promotion of phytohormones on algal growth in standard media, but attempts have been scarce, focusing on wastewater cultivation system. In addition, the effects of wastewater on algal morphology and ultrastructure have not been revealed so far, much less on the mechanism of the role of phytohormones on algae. RESULTS:ADE-KW disrupted the membranes of nuclear and chloroplast in ultrastructural cell of SDEC-11, and reduced the room between chloroplast and cell membrane and increased the starch size of SDEC-13. This reduced algal growth and biocompound accumulation, but SDEC-13 had greater adaptation to ADE-KW than SDEC-11. Moreover, inoculation with an algal seed pretreated with GIB aided the adaptability and viability of algae in ADE-KW, which for SDEC-13 was even promoted to the level in BG11. GIB mitigated the inhibition of ADE-KW on algal cell division and photosynthetic pigments and apparatus, and increased lipid droplets, which might result from the change in the synthesis and the fate of nicotinamide adenine dinucleotide phosphate. GIB addition significantly promoted lipid productivity of the two algal species, following 13 mg L-1 d-1 of SDEC-11 in B+ADE-KW and especially 13 mg L-1 d-1 of SDEC-13 achieved during the priming of algal seed with the hormones, which is 139% higher than 5 mg L-1 d-1 achieved in ADE-KW control. CONCLUSIONS:Agricultural phytohormones could be applied as a strategy for promoting biomass and biocompound accumulation of algae in ADE-KW, in which pretreatment of the algal inoculum with hormones is a unique way to help algae survive under stress. Considering our results and treatment technology for kitchen waste, a more feasible and economic plant can be built incorporating anaerobic digestion, algae cultivation with ADE-KW assisted with phytohormones, and biodiesel production.

journal_name

Biotechnol Biofuels

authors

Pei H,Jiang L,Hou Q,Yu Z

doi

10.1186/s13068-017-0759-3

subject

Has Abstract

pub_date

2017-03-24 00:00:00

pages

76

issn

1754-6834

pii

759

journal_volume

10

pub_type

杂志文章
  • Increased ethylene production by overexpressing phosphoenolpyruvate carboxylase in the cyanobacterium Synechocystis PCC 6803.

    abstract:Background:Cyanobacteria can be metabolically engineered to convert CO2 to fuels and chemicals such as ethylene. A major challenge in such efforts is to optimize carbon fixation and partition towards target molecules. Results:The efe gene encoding an ethylene-forming enzyme was introduced into a strain of the cyanobac...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-1653-y

    authors: Durall C,Lindberg P,Yu J,Lindblad P

    更新日期:2020-01-28 00:00:00

  • Visualizing cellulase adsorption and quantitatively determining cellulose accessibility with an updated fungal cellulose-binding module-based fluorescent probe protein.

    abstract:Background:Cellulose accessibility to cellulases (CAC) is a direct factor determining the enzymatic digestibility of lignocellulosic cellulose. Improving CAC by pretreatment is a prerequisite step for the efficient release of fermentable sugars from biomass cell wall. However, conventional methods to study the porosime...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1105-0

    authors: Li T,Liu N,Ou X,Zhao X,Qi F,Huang J,Liu D

    更新日期:2018-04-09 00:00:00

  • Improving L-arabinose utilization of pentose fermenting Saccharomyces cerevisiae cells by heterologous expression of L-arabinose transporting sugar transporters.

    abstract:BACKGROUND:Hydrolysates of plant biomass used for the production of lignocellulosic biofuels typically contain sugar mixtures consisting mainly of D-glucose and D-xylose, and minor amounts of L-arabinose. The yeast Saccharomyces cerevisiae is the preferred microorganism for the fermentative production of ethanol but is...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-4-38

    authors: Subtil T,Boles E

    更新日期:2011-10-12 00:00:00

  • Recent advances in lignin valorization with bacterial cultures: microorganisms, metabolic pathways, and bio-products.

    abstract::Lignin is the most abundant aromatic substrate on Earth and its valorization technologies are still under developed. Depolymerization and fragmentation are the predominant preparatory strategies for valorization of lignin to chemicals and fuels. However, due to the structural heterogeneity of lignin, depolymerization ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章,评审

    doi:10.1186/s13068-019-1376-0

    authors: Xu Z,Lei P,Zhai R,Wen Z,Jin M

    更新日期:2019-02-15 00:00:00

  • Deletion of meso-2,3-butanediol dehydrogenase gene budC for enhanced D-2,3-butanediol production in Bacillus licheniformis.

    abstract:BACKGROUND:D-2,3-butanediol has many industrial applications such as chiral reagents, solvents, anti-freeze agents, and low freezing point fuels. Traditional D-2,3-butanediol producing microorganisms, such as Klebsiella pneumonia and K. xoytoca, are pathogenic and not capable of producing D-2,3-butanediol at high optic...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-7-16

    authors: Qi G,Kang Y,Li L,Xiao A,Zhang S,Wen Z,Xu D,Chen S

    更新日期:2014-01-29 00:00:00

  • Propionic acid production from corn stover hydrolysate by Propionibacterium acidipropionici.

    abstract:BACKGROUND:The production of value-added chemicals alongside biofuels from lignocellulosic hydrolysates is critical for developing economically viable biorefineries. Here, the production of propionic acid (PA), a potential building block for C3-based chemicals, from corn stover hydrolysate is investigated using the nat...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0884-z

    authors: Wang X,Salvachúa D,Sànchez I Nogué V,Michener WE,Bratis AD,Dorgan JR,Beckham GT

    更新日期:2017-08-17 00:00:00

  • Efficient production of d-lactate from methane in a lactate-tolerant strain of Methylomonas sp. DH-1 generated by adaptive laboratory evolution.

    abstract:Background:Methane, a main component of natural gas and biogas, has gained much attention as an abundant and low-cost carbon source. Methanotrophs, which can use methane as a sole carbon and energy source, are promising hosts to produce value-added chemicals from methane, but their metabolic engineering is still challe...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1574-9

    authors: Lee JK,Kim S,Kim W,Kim S,Cha S,Moon H,Hur DH,Kim SY,Na JG,Lee JW,Lee EY,Hahn JS

    更新日期:2019-09-30 00:00:00

  • Butanol production from laccase-pretreated brewer's spent grain.

    abstract:Background:Beer is the most popular alcoholic beverage worldwide. In the manufacture of beer, various by-products and residues are generated, and the most abundant (85% of total by-products) are spent grains. Thanks to its high (hemi)cellulose content (about 50% w/w dry weight), this secondary raw material is attractiv...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1383-1

    authors: Giacobbe S,Piscitelli A,Raganati F,Lettera V,Sannia G,Marzocchella A,Pezzella C

    更新日期:2019-03-05 00:00:00

  • Improving pentose fermentation by preventing ubiquitination of hexose transporters in Saccharomyces cerevisiae.

    abstract:BACKGROUND:Engineering of the yeast Saccharomyces cerevisiae for improved utilization of pentose sugars is vital for cost-efficient cellulosic bioethanol production. Although endogenous hexose transporters (Hxt) can be engineered into specific pentose transporters, they remain subjected to glucose-regulated protein deg...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0573-3

    authors: Nijland JG,Vos E,Shin HY,de Waal PP,Klaassen P,Driessen AJ

    更新日期:2016-07-26 00:00:00

  • Presence does not imply activity: DNA and RNA patterns differ in response to salt perturbation in anaerobic digestion.

    abstract:BACKGROUND:The microbial community in anaerobic digestion is mainly monitored by means of DNA-based methods. This may lead to incorrect interpretation of the community parameters, because microbial abundance does not necessarily reflect activity. In this research, the difference between microbial community response on ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0652-5

    authors: De Vrieze J,Regueiro L,Props R,Vilchez-Vargas R,Jáuregui R,Pieper DH,Lema JM,Carballa M

    更新日期:2016-11-09 00:00:00

  • Sugar loss and enzyme inhibition due to oligosaccharide accumulation during high solids-loading enzymatic hydrolysis.

    abstract:BACKGROUND:Accumulation of recalcitrant oligosaccharides during high-solids loading enzymatic hydrolysis of cellulosic biomass reduces biofuel yields and increases processing costs for a cellulosic biorefinery. Recalcitrant oligosaccharides in AFEX-pretreated corn stover hydrolysate accumulate to the extent of about 18...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0378-9

    authors: Xue S,Uppugundla N,Bowman MJ,Cavalier D,Da Costa Sousa L,E Dale B,Balan V

    更新日期:2015-11-26 00:00:00

  • Engineering a Streptomyces coelicolor biosynthesis pathway into Escherichia coli for high yield triglyceride production.

    abstract:BACKGROUND:Microbial lipid production represents a potential alternative feedstock for the biofuel and oleochemical industries. Since Escherichia coli exhibits many genetic, technical, and biotechnological advantages over native oleaginous bacteria, we aimed to construct a metabolically engineered E. coli strain capabl...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-014-0172-0

    authors: Comba S,Sabatini M,Menendez-Bravo S,Arabolaza A,Gramajo H

    更新日期:2014-12-24 00:00:00

  • Metabolic engineering of Yarrowia lipolytica for thermoresistance and enhanced erythritol productivity.

    abstract:Background:Functional sugar alcohols have been widely used in the food, medicine, and pharmaceutical industries for their unique properties. Among these, erythritol is a zero calories sweetener produced by the yeast Yarrowia lipolytica. However, in wild-type strains, erythritol is produced with low productivity and yie...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-01815-8

    authors: Wang N,Chi P,Zou Y,Xu Y,Xu S,Bilal M,Fickers P,Cheng H

    更新日期:2020-10-20 00:00:00

  • Combining inhibitor tolerance and D-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production.

    abstract:BACKGROUND:In addition to efficient pentose utilization, high inhibitor tolerance is a key trait required in any organism used for economically viable industrial bioethanol production with lignocellulose biomass. Although recent work has succeeded in establishing efficient xylose fermentation in robust industrial Sacch...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-120

    authors: Demeke MM,Dumortier F,Li Y,Broeckx T,Foulquié-Moreno MR,Thevelein JM

    更新日期:2013-08-26 00:00:00

  • Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae.

    abstract:BACKGROUND:Lignocellulosic materials are abundant and among the most important potential sources for bioethanol production. Although the pretreatment of lignocellulose is necessary for efficient saccharification and fermentation, numerous by-products, including furan derivatives, weak acids, and phenolic compounds, are...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-1-3

    authors: Endo A,Nakamura T,Ando A,Tokuyasu K,Shima J

    更新日期:2008-04-15 00:00:00

  • Physical and chemical differences between one-stage and two-stage hydrothermal pretreated hardwood substrates for use in cellulosic ethanol production.

    abstract:BACKGROUND:There are many different types of pretreatment carried out to prepare cellulosic substrates for fermentation. In this study, one- and two-stage hydrothermal pretreatment were carried out to determine their effects on subsequent fermentations. The two substrates were found to behave differently during ferment...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0446-9

    authors: Guilliams A,Pattathil S,Willies D,Richards M,Pu Y,Kandemkavil S,Wiswall E

    更新日期:2016-02-03 00:00:00

  • Modular systems metabolic engineering enables balancing of relevant pathways for l-histidine production with Corynebacterium glutamicum.

    abstract:Background:l-Histidine biosynthesis is embedded in an intertwined metabolic network which renders microbial overproduction of this amino acid challenging. This is reflected in the few available examples of histidine producers in literature. Since knowledge about the metabolic interplay is limited, we systematically per...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1410-2

    authors: Schwentner A,Feith A,Münch E,Stiefelmaier J,Lauer I,Favilli L,Massner C,Öhrlein J,Grund B,Hüser A,Takors R,Blombach B

    更新日期:2019-03-25 00:00:00

  • Disruption of the transcription factors Thi2p and Nrm1p alleviates the post-glucose effect on xylose utilization in Saccharomyces cerevisiae.

    abstract:Background:The recombinant Saccharomyces cerevisiae strains that acquired the ability to utilize xylose through metabolic and evolutionary engineering exhibit good performance when xylose is the sole carbon source in the medium (designated the X stage in the present work). However, the xylose consumption rate of strain...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1112-1

    authors: Wei S,Liu Y,Wu M,Ma T,Bai X,Hou J,Shen Y,Bao X

    更新日期:2018-04-16 00:00:00

  • Freshwater microalgae harvested via flocculation induced by pH decrease.

    abstract:BACKGROUND:Recent studies have demonstrated that microalga has been widely regarded as one of the most promising raw materials of biofuels. However, lack of an economical, efficient and convenient method to harvest microalgae is a bottleneck to boost their full-scale application. Many methods of harvesting microalgae, ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-98

    authors: Liu J,Zhu Y,Tao Y,Zhang Y,Li A,Li T,Sang M,Zhang C

    更新日期:2013-07-09 00:00:00

  • Characterization and engineering of a dual-function diacylglycerol acyltransferase in the oleaginous marine diatom Phaeodactylum tricornutum.

    abstract:Background:Photosynthetic oleaginous microalgae are promising feedstocks for biofuels. Acyl-CoA:diacylglycerol acyltransferases (DGATs) represent rich sources for engineering microalgal lipid production. The principal activity of DGATs has been defined as a single-function enzyme catalyzing the esterification of diacyl...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1029-8

    authors: Cui Y,Zhao J,Wang Y,Qin S,Lu Y

    更新日期:2018-02-09 00:00:00

  • Comparative secretome analysis of Trichoderma asperellum S4F8 and Trichoderma reesei Rut C30 during solid-state fermentation on sugarcane bagasse.

    abstract:BACKGROUND:The lignocellulosic enzymes of Trichoderma species have received particular attention with regard to biomass conversion to biofuels, but the production cost of these enzymes remains a significant hurdle for their commercial application. In this study, we quantitatively compared the lignocellulolytic enzyme p...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-172

    authors: Marx IJ,van Wyk N,Smit S,Jacobson D,Viljoen-Bloom M,Volschenk H

    更新日期:2013-11-29 00:00:00

  • A truncated form of the Carbon catabolite repressor 1 increases cellulase production in Trichoderma reesei.

    abstract:BACKGROUND:Rut-C30 is a cellulase-hyperproducing Trichoderma reesei strain and, consequently, became the ancestor of most industry strains used in the production of plant cell wall-degrading enzymes, in particular cellulases. Due to three rounds of undirected mutagenesis its genetic background differs from the wild-typ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-014-0129-3

    authors: Mello-de-Sousa TM,Gorsche R,Rassinger A,Poças-Fonseca MJ,Mach RL,Mach-Aigner AR

    更新日期:2014-09-11 00:00:00

  • Lytic polysaccharide monooxygenases and other oxidative enzymes are abundantly secreted by Aspergillus nidulans grown on different starches.

    abstract:BACKGROUND:Starch is the second most abundant plant-derived biomass and a major feedstock in non-food industrial applications and first generation biofuel production. In contrast to lignocellulose, detailed insight into fungal degradation of starch is currently lacking. This study explores the secretomes of Aspergillus...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0604-0

    authors: Nekiunaite L,Arntzen MØ,Svensson B,Vaaje-Kolstad G,Abou Hachem M

    更新日期:2016-09-01 00:00:00

  • Elucidation of the effect of ionic liquid pretreatment on rice husk via structural analyses.

    abstract:UNLABELLED: BACKGROUND:In the present study, three ionic liquids, namely 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc), and 1-ethyl-3-methylimidazolium diethyl phosphate ([EMIM]DEP), were used to partially dissolve rice husk, after which the cellulose were regenerated...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-5-67

    authors: Ang TN,Ngoh GC,Chua AS,Lee MG

    更新日期:2012-09-07 00:00:00

  • Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing.

    abstract:BACKGROUND:Renewable energy production is currently a major issue worldwide. Biogas is a promising renewable energy carrier as the technology of its production combines the elimination of organic waste with the formation of a versatile energy carrier, methane. In consequence of the complexity of the microbial communiti...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-5-41

    authors: Wirth R,Kovács E,Maróti G,Bagi Z,Rákhely G,Kovács KL

    更新日期:2012-07-12 00:00:00

  • Nitrogen-dependent coordination of cell cycle, quiescence and TAG accumulation in Chlamydomonas.

    abstract::Microalgae hold great promises as sustainable cellular factories for the production of alternative fuels, feeds, and biopharmaceuticals for human health. While the biorefinery approach for fuels along with the coproduction of high-value compounds with industrial, therapeutic, or nutraceutical applications have the pot...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章,评审

    doi:10.1186/s13068-019-1635-0

    authors: Takeuchi T,Benning C

    更新日期:2019-12-23 00:00:00

  • Direct bioconversion of brown algae into ethanol by thermophilic bacterium Defluviitalea phaphyphila.

    abstract:BACKGROUND:Brown algae are promising feedstocks for biofuel production with inherent advantages of no structural lignin, high growth rate, and no competition for land and fresh water. However, it is difficult for one microorganism to convert all components of brown algae with different oxidoreduction potentials to etha...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0494-1

    authors: Ji SQ,Wang B,Lu M,Li FL

    更新日期:2016-04-01 00:00:00

  • Increasing n-butanol production with Saccharomyces cerevisiae by optimizing acetyl-CoA synthesis, NADH levels and trans-2-enoyl-CoA reductase expression.

    abstract:BACKGROUND:n-Butanol can serve as an excellent gasoline substitute. Naturally, it is produced by some Clostridia species which, however, exhibit only limited suitability for industrial n-butanol production. The yeast Saccharomyces cerevisiae would be an ideal host due to its high robustness in fermentation processes. N...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0673-0

    authors: Schadeweg V,Boles E

    更新日期:2016-11-25 00:00:00

  • Enhanced rates of enzymatic saccharification and catalytic synthesis of biofuel substrates in gelatinized cellulose generated by trifluoroacetic acid.

    abstract:Background:The crystallinity of cellulose is a principal factor limiting the efficient hydrolysis of biomass to fermentable sugars or direct catalytic conversion to biofuel components. We evaluated the impact of TFA-induced gelatinization of crystalline cellulose on enhancement of enzymatic digestion and catalytic conv...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0999-2

    authors: Shiga TM,Xiao W,Yang H,Zhang X,Olek AT,Donohoe BS,Liu J,Makowski L,Hou T,McCann MC,Carpita NC,Mosier NS

    更新日期:2017-12-27 00:00:00

  • Generation of random mutants to improve light-use efficiency of Nannochloropsis gaditana cultures for biofuel production.

    abstract:BACKGROUND:The productivity of an algal culture depends on how efficiently it converts sunlight into biomass and lipids. Wild-type algae in their natural environment evolved to compete for light energy and maximize individual cell growth; however, in a photobioreactor, global productivity should be maximized. Improving...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0337-5

    authors: Perin G,Bellan A,Segalla A,Meneghesso A,Alboresi A,Morosinotto T

    更新日期:2015-09-25 00:00:00