Increasing n-butanol production with Saccharomyces cerevisiae by optimizing acetyl-CoA synthesis, NADH levels and trans-2-enoyl-CoA reductase expression.

Abstract:

BACKGROUND:n-Butanol can serve as an excellent gasoline substitute. Naturally, it is produced by some Clostridia species which, however, exhibit only limited suitability for industrial n-butanol production. The yeast Saccharomyces cerevisiae would be an ideal host due to its high robustness in fermentation processes. Nevertheless, n-butanol yields and titers obtained so far with genetically engineered yeast strains are only low. RESULTS:In our recent work, we showed that n-butanol production via a clostridial acetoacetyl-CoA-derived pathway in engineered yeast was limited by the availability of coenzyme A (CoA) and cytosolic acetyl-CoA. Increasing their levels resulted in a strain producing up to 130 mg/L n-butanol under anaerobic conditions. Here, we show that under aerobic conditions. this strain can even produce up to 235 mg/L n-butanol probably due to a more efficient NADH re-oxidation. Nevertheless, expression of a bacterial water-forming NADH oxidase (nox) significantly reduced n-butanol production although it showed a positive effect on growth and glucose consumption. Screening for an improved version of an acetyl-CoA forming NAD+-dependent acetylating acetaldehyde dehydrogenase, adhEA267T/E568K/R577S, and its integration into n-butanol-producing strain further improved n-butanol production. Moreover, deletion of the competing NADP+-dependent acetaldehyde dehydrogenase Ald6 had a superior effect on n-butanol formation. To increase the endogenous supply of CoA, amine oxidase Fms1 was overexpressed together with pantothenate kinase coaA from Escherichia coli, and could completely compensate the beneficial effect on n-butanol synthesis of addition of pantothenate to the medium. By overexpression of each of the enzymes of n-butanol pathway in the n-butanol-producing yeast strain, it turned out that trans-2-enoyl-CoA reductase (ter) was limiting n-butanol production. Additional overexpression of ter finally resulted in a yeast strain producing n-butanol up to a titer of 0.86 g/L and a yield of 0.071 g/g glucose. CONCLUSIONS:By further optimizing substrate supply and redox power in the form of coenzyme A, acetyl-CoA and NADH, n-butanol production with engineered yeast cells could be improved to levels never reached before with S. cerevisiae via an acetoacetyl-CoA-derived pathway in synthetic medium. Moreover, our results indicate that the NAD+/NADH redox balance and the trans-2-enoyl-CoA reductase reaction seem to be bottlenecks for n-butanol production with yeast.

journal_name

Biotechnol Biofuels

authors

Schadeweg V,Boles E

doi

10.1186/s13068-016-0673-0

subject

Has Abstract

pub_date

2016-11-25 00:00:00

pages

257

issn

1754-6834

pii

673

journal_volume

9

pub_type

杂志文章
  • A new method to evaluate temperature vs. pH activity profiles for biotechnological relevant enzymes.

    abstract:BACKGROUND:Glycoside hydrolases are important for various industrial and scientific applications. Determination of their temperature as well as pH optima and range is crucial to evaluate whether an enzyme is suitable for application in a biotechnological process. These basic characteristics of enzymes are generally det...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0923-9

    authors: Herlet J,Kornberger P,Roessler B,Glanz J,Schwarz WH,Liebl W,Zverlov VV

    更新日期:2017-10-11 00:00:00

  • Stochastic techno-economic analysis of alcohol-to-jet fuel production.

    abstract:BACKGROUND:Alcohol-to-jet (ATJ) is one of the technical feasible biofuel technologies. It produces jet fuel from sugary, starchy, and lignocellulosic biomass, such as sugarcane, corn grain, and switchgrass, via fermentation of sugars to ethanol or other alcohols. This study assesses the ATJ biofuel production pathway f...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0702-7

    authors: Yao G,Staples MD,Malina R,Tyner WE

    更新日期:2017-01-19 00:00:00

  • Periodic-peristole agitation for process enhancement of butanol fermentation.

    abstract:BACKGROUND:Mass transfer plays an important role in determining the efficiency of the biofuel conversion. However, adverse effect of shear stress from traditional agitation inhibits the cell growth and production of biofuels. How to enhance the mass transfer with less adverse effect is considered as one of the importan...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0409-6

    authors: Xia ML,Wang L,Yang ZX,Chen HZ

    更新日期:2015-12-23 00:00:00

  • Consolidated bioprocessing of Populus using Clostridium (Ruminiclostridium) thermocellum: a case study on the impact of lignin composition and structure.

    abstract:BACKGROUND:Higher ratios of syringyl-to-guaiacyl (S/G) lignin components of Populus were shown to improve sugar release by enzymatic hydrolysis using commercial blends. Cellulolytic microbes are often robust biomass hydrolyzers and may offer cost advantages; however, it is unknown whether their activity can also be sig...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0445-x

    authors: Dumitrache A,Akinosho H,Rodriguez M Jr,Meng X,Yoo CG,Natzke J,Engle NL,Sykes RW,Tschaplinski TJ,Muchero W,Ragauskas AJ,Davison BH,Brown SD

    更新日期:2016-02-04 00:00:00

  • Improved simultaneous co-fermentation of glucose and xylose by Saccharomyces cerevisiae for efficient lignocellulosic biorefinery.

    abstract:Background:Lignocellulosic biorefinery offers economical and sustainable production of fuels and chemicals. Saccharomyces cerevisiae, a promising industrial host for biorefinery, has been intensively developed to expand its product profile. However, the sequential and slow conversion of xylose into target products rema...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1641-2

    authors: Hoang Nguyen Tran P,Ko JK,Gong G,Um Y,Lee SM

    更新日期:2020-01-22 00:00:00

  • Bamboo lignocellulose degradation by gut symbiotic microbiota of the bamboo snout beetle Cyrtotrachelus buqueti.

    abstract:Background:Gut symbiotic microbiota plays a critical role in nutrient supply, digestion, and absorption. The bamboo snout beetle, Cyrtotrachelus buqueti, a common pest of several bamboo species, exhibits high lignocellulolytic enzyme activity and contains various CAZyme genes. However, to date, no studies have evaluate...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1411-1

    authors: Luo C,Li Y,Chen Y,Fu C,Long W,Xiao X,Liao H,Yang Y

    更新日期:2019-04-01 00:00:00

  • Chemical and structural changes associated with Cu-catalyzed alkaline-oxidative delignification of hybrid poplar.

    abstract:BACKGROUND:Alkaline hydrogen peroxide pretreatment catalyzed by Cu(II) 2,2'-bipyridine complexes has previously been determined to substantially improve the enzymatic hydrolysis of woody plants including hybrid poplar as a consequence of moderate delignification. In the present work, cell wall morphological and lignin ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0300-5

    authors: Li Z,Bansal N,Azarpira A,Bhalla A,Chen CH,Ralph J,Hegg EL,Hodge DB

    更新日期:2015-08-20 00:00:00

  • Metabolic engineering of Bacillus amyloliquefaciens for enhanced production of S-adenosylmethionine by coupling of an engineered S-adenosylmethionine pathway and the tricarboxylic acid cycle.

    abstract:Background:S-Adenosylmethionine (SAM) is a critical cofactor involved in many biochemical reactions. However, the low fermentation titer of SAM in methionine-free medium hampers commercial-scale production. The SAM synthesis pathway is specially related to the tricarboxylic acid (TCA) cycle in Bacillus amyloliquefacien...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1554-0

    authors: Ruan L,Li L,Zou D,Jiang C,Wen Z,Chen S,Deng Y,Wei X

    更新日期:2019-09-09 00:00:00

  • Increased ethylene production by overexpressing phosphoenolpyruvate carboxylase in the cyanobacterium Synechocystis PCC 6803.

    abstract:Background:Cyanobacteria can be metabolically engineered to convert CO2 to fuels and chemicals such as ethylene. A major challenge in such efforts is to optimize carbon fixation and partition towards target molecules. Results:The efe gene encoding an ethylene-forming enzyme was introduced into a strain of the cyanobac...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-1653-y

    authors: Durall C,Lindberg P,Yu J,Lindblad P

    更新日期:2020-01-28 00:00:00

  • Evolutionary engineering in Saccharomyces cerevisiae reveals a TRK1-dependent potassium influx mechanism for propionic acid tolerance.

    abstract:Background:Propionic acid (PA), a key platform chemical produced as a by-product during petroleum refining, has been widely used as a food preservative and an important chemical intermediate in many industries. Microbial PA production through engineering yeast as a cell factory is a potentially sustainable alternative ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1427-6

    authors: Xu X,Williams TC,Divne C,Pretorius IS,Paulsen IT

    更新日期:2019-04-23 00:00:00

  • What cell wall components are the best indicators for Miscanthus digestibility and conversion to ethanol following variable pretreatments?

    abstract:Background:Energy crops including Miscanthus provide a storable, portable energy source which can be used to complement a wide range of products and energy generation systems. Miscanthus is predominantly used in Europe as a combustion material for electricity generation but also has the potential for biochemical conver...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1066-3

    authors: Adams JMM,Winters AL,Hodgson EM,Gallagher JA

    更新日期:2018-03-14 00:00:00

  • Exploring xylose metabolism in Spathaspora species: XYL1.2 from Spathaspora passalidarum as the key for efficient anaerobic xylose fermentation in metabolic engineered Saccharomyces cerevisiae.

    abstract:BACKGROUND:The production of ethanol and other fuels and chemicals from lignocellulosic materials is dependent of efficient xylose conversion. Xylose fermentation capacity in yeasts is usually linked to xylose reductase (XR) accepting NADH as cofactor. The XR from Scheffersomyces stipitis, which is able to use NADH as ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0570-6

    authors: Cadete RM,de Las Heras AM,Sandström AG,Ferreira C,Gírio F,Gorwa-Grauslund MF,Rosa CA,Fonseca C

    更新日期:2016-08-05 00:00:00

  • From wheat straw to bioethanol: integrative analysis of a separate hydrolysis and co-fermentation process with implemented enzyme production.

    abstract:BACKGROUND:Lignocellulosic ethanol has a high potential as renewable energy source. In recent years, much research effort has been spent to optimize parameters involved in the production process. Despite that, there is still a lack of comprehensive studies on process integration. Single parameters and process configura...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0232-0

    authors: Novy V,Longus K,Nidetzky B

    更新日期:2015-03-18 00:00:00

  • Synergistic effects of mixing hybrid poplar and wheat straw biomass for bioconversion processes.

    abstract:BACKGROUND:Low cost of raw materials and good process yields are necessary for future lignocellulosic biomass biorefineries to be sustainable and profitable. A low cost feedstock will be diverse, changing as a function of seasonality and price and will most likely be available from multiple sources to the biorefinery. ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0414-9

    authors: Vera RM,Bura R,Gustafson R

    更新日期:2015-12-24 00:00:00

  • The difference in effective light penetration may explain the superiority in photosynthetic efficiency of attached cultivation over the conventional open pond for microalgae.

    abstract:BACKGROUND:The 'attached cultivation' technique for microalgae production, combining the immobilized biofilm technology with proper light dilution strategies, has shown improved biomass production and photosynthetic efficiency over conventional open-pond suspended cultures. However, how light is transferred and distrib...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0240-0

    authors: Wang J,Liu J,Liu T

    更新日期:2015-03-26 00:00:00

  • The diversity of hydrogen-producing bacteria and methanogens within an in situ coal seam.

    abstract:Background:Biogenic and biogenic-thermogenic coalbed methane (CBM) are important energy reserves for unconventional natural gas. Thus, to investigate biogenic gas formation mechanisms, a series of fresh coal samples from several representative areas of China were analyzed to detect hydrogen-producing bacteria and metha...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1237-2

    authors: Su X,Zhao W,Xia D

    更新日期:2018-09-08 00:00:00

  • Direct bioconversion of brown algae into ethanol by thermophilic bacterium Defluviitalea phaphyphila.

    abstract:BACKGROUND:Brown algae are promising feedstocks for biofuel production with inherent advantages of no structural lignin, high growth rate, and no competition for land and fresh water. However, it is difficult for one microorganism to convert all components of brown algae with different oxidoreduction potentials to etha...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0494-1

    authors: Ji SQ,Wang B,Lu M,Li FL

    更新日期:2016-04-01 00:00:00

  • Glycogen production for biofuels by the euryhaline cyanobacteria Synechococcus sp. strain PCC 7002 from an oceanic environment.

    abstract:BACKGROUND:Oxygenic photosynthetic microorganisms such as cyanobacteria and microalgae have attracted attention as an alternative carbon source for the next generation of biofuels. Glycogen abundantly accumulated in cyanobacteria is a promising feedstock which can be converted to ethanol through saccharification and fe...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-7-88

    authors: Aikawa S,Nishida A,Ho SH,Chang JS,Hasunuma T,Kondo A

    更新日期:2014-06-11 00:00:00

  • Conversion of biomass-derived oligosaccharides into lipids.

    abstract:BACKGROUND:Oligocelluloses and oligoxyloses are partially hydrolyzed products from lignocellulosic biomass hydrolysis. Biomass hydrolysates usually contain monosaccharides as well as various amounts of oligosaccharides. To utilize biomass hydrolysates more efficiently, it is important to identify microorganisms capable...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-7-13

    authors: Gong Z,Wang Q,Shen H,Wang L,Xie H,Zhao ZK

    更新日期:2014-01-28 00:00:00

  • T-6b allocates more assimilation product for oil synthesis and less for polysaccharide synthesis during the seed development of Arabidopsis thaliana.

    abstract:BACKGROUND:As an Agrobacterium tumefaciens T-DNA oncogene, T-6b induces the development of tumors and the enation syndrome in vegetative tissues of transgenic plants. Most of these effects are related to increases in soluble sugar contents. To verify the potential roles of T-6b in the distribution of carbon in developi...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0706-3

    authors: Jin Y,Hu J,Liu X,Ruan Y,Sun C,Liu C

    更新日期:2017-01-21 00:00:00

  • Metabolic engineering of Aspergillus niger via ribonucleoprotein-based CRISPR-Cas9 system for succinic acid production from renewable biomass.

    abstract:BACKGROUND:Succinic acid has great potential to be a new bio-based building block for deriving a number of value-added chemicals in industry. Bio-based succinic acid production from renewable biomass can provide a feasible approach to partially alleviate the dependence of global manufacturing on petroleum refinery. To ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-01850-5

    authors: Yang L,Henriksen MM,Hansen RS,Lübeck M,Vang J,Andersen JE,Bille S,Lübeck PS

    更新日期:2020-12-14 00:00:00

  • Low temperature lignocellulose pretreatment: effects and interactions of pretreatment pH are critical for maximizing enzymatic monosaccharide yields from wheat straw.

    abstract:BACKGROUND:The recent development of improved enzymes and pentose-using yeast for cellulosic ethanol processes calls for new attention to the lignocellulose pretreatment step. This study assessed the influence of pretreatment pH, temperature, and time, and their interactions on the enzymatic glucose and xylose yields f...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-4-11

    authors: Pedersen M,Johansen KS,Meyer AS

    更新日期:2011-05-13 00:00:00

  • Leveraging transcription factors to speed cellobiose fermentation by Saccharomyces cerevisiae.

    abstract:BACKGROUND:Saccharomyces cerevisiae, a key organism used for the manufacture of renewable fuels and chemicals, has been engineered to utilize non-native sugars derived from plant cell walls, such as cellobiose and xylose. However, the rates and efficiencies of these non-native sugar fermentations pale in comparison wit...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-014-0126-6

    authors: Lin Y,Chomvong K,Acosta-Sampson L,Estrela R,Galazka JM,Kim SR,Jin YS,Cate JH

    更新日期:2014-08-27 00:00:00

  • The two Rasamsonia emersonii α-glucuronidases, ReGH67 and ReGH115, show a different mode-of-action towards glucuronoxylan and glucuronoxylo-oligosaccharides.

    abstract:BACKGROUND:The production of biofuels and biochemicals from grass-type plant biomass requires a complete utilisation of the plant cellulose and hemicellulosic xylan via enzymatic degradation to their constituent monosaccharides. Generally, physical and/or thermochemical pretreatments are performed to enable access for ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0519-9

    authors: Martínez PM,Appeldoorn MM,Gruppen H,Kabel MA

    更新日期:2016-05-18 00:00:00

  • Potential of Zymomonas mobilis as an electricity producer in ethanol production.

    abstract:Background:Microbial fuel cell (MFC) convokes microorganism to convert biomass into electricity. However, most well-known electrogenic strains cannot directly use glucose to produce valuable products. Zymomonas mobilis, a promising bacterium for ethanol production, owns special Entner-Doudoroff pathway with less ATP an...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-01672-5

    authors: Geng BY,Cao LY,Li F,Song H,Liu CG,Zhao XQ,Bai FW

    更新日期:2020-03-05 00:00:00

  • Stepwise metabolic engineering of Escherichia coli to produce triacylglycerol rich in medium-chain fatty acids.

    abstract:Background:Triacylglycerols (TAGs) rich in medium-chain fatty acids (MCFAs, C10-14 fatty acids) are valuable feedstocks for biofuels and chemicals. Natural sources of TAGs rich in MCFAs are restricted to a limited number of plant species, which are unsuitable for mass agronomic production. Instead, the modification of ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1177-x

    authors: Xu L,Wang L,Zhou XR,Chen WC,Singh S,Hu Z,Huang FH,Wan X

    更新日期:2018-06-25 00:00:00

  • A novel population balance model for the dilute acid hydrolysis of hemicellulose.

    abstract:BACKGROUND:Acid hydrolysis is a popular pretreatment for removing hemicellulose from lignocelluloses in order to produce a digestible substrate for enzymatic saccharification. In this work, a novel model for the dilute acid hydrolysis of hemicellulose within sugarcane bagasse is presented and calibrated against experim...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0211-5

    authors: Greenwood AA,Farrell TW,Zhang Z,O'Hara IM

    更新日期:2015-02-19 00:00:00

  • High concentrations of dried sorghum stalks as a biomass feedstock for single cell oil production by Rhodosporidium toruloides.

    abstract:BACKGROUND:Environmental crisis and concerns for energy security have made the research for renewable fuels that will substitute the usage of fossil fuels an important priority. Biodiesel is a potential substitute for petroleum, but its feasibility is hindered by the utilization of edible vegetable oil as raw material,...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-014-0190-y

    authors: Matsakas L,Bonturi N,Miranda EA,Rova U,Christakopoulos P

    更新日期:2015-01-22 00:00:00

  • Efficient production of d-lactate from methane in a lactate-tolerant strain of Methylomonas sp. DH-1 generated by adaptive laboratory evolution.

    abstract:Background:Methane, a main component of natural gas and biogas, has gained much attention as an abundant and low-cost carbon source. Methanotrophs, which can use methane as a sole carbon and energy source, are promising hosts to produce value-added chemicals from methane, but their metabolic engineering is still challe...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1574-9

    authors: Lee JK,Kim S,Kim W,Kim S,Cha S,Moon H,Hur DH,Kim SY,Na JG,Lee JW,Lee EY,Hahn JS

    更新日期:2019-09-30 00:00:00

  • Nitrogen-dependent coordination of cell cycle, quiescence and TAG accumulation in Chlamydomonas.

    abstract::Microalgae hold great promises as sustainable cellular factories for the production of alternative fuels, feeds, and biopharmaceuticals for human health. While the biorefinery approach for fuels along with the coproduction of high-value compounds with industrial, therapeutic, or nutraceutical applications have the pot...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章,评审

    doi:10.1186/s13068-019-1635-0

    authors: Takeuchi T,Benning C

    更新日期:2019-12-23 00:00:00