From wheat straw to bioethanol: integrative analysis of a separate hydrolysis and co-fermentation process with implemented enzyme production.

Abstract:

BACKGROUND:Lignocellulosic ethanol has a high potential as renewable energy source. In recent years, much research effort has been spent to optimize parameters involved in the production process. Despite that, there is still a lack of comprehensive studies on process integration. Single parameters and process configurations are, however, heavily interrelated and can affect the overall process efficiency in a multitude of ways. Here, we present an integrative approach for bioethanol production from wheat straw at a representative laboratory scale using a separate hydrolysis and co-fermentation (SHCF) process. The process does not rely on commercial (hemi-) cellulases but includes enzyme production through Hypocrea jecorina (formerly Trichoderma reesei) on the pre-treated feedstock as key unit operation. Hydrolysis reactions are run with high solid loadings of 15% dry mass pre-treated wheat straw (DM WS), and hydrolyzates are utilized without detoxification for mixed glucose-xylose fermentation with the genetically and evolutionary engineered Saccharomyces cerevisiae strain IBB10B05. RESULTS:Process configurations of unit operations in the benchtop SHCF were varied and evaluated with respect to the overall process ethanol yield (Y Ethanol-Process). The highest Y Ethanol-Process of 71.2 g ethanol per kg raw material was reached when fungal fermentations were run as batch, and the hydrolysis reaction was done with an enzyme loading of 30 filter paper units (FPU)/gDM WS. 1.7 ± 0.1 FPU/mL were produced, glucose and xylose were released with a conversion efficiency of 67% and 95%, respectively, and strain IBB10B05 showed an ethanol yield of 0.4 g/gGlc + Xyl in 15% hydrolyzate fermentations. Based on the detailed process analysis, it was further possible to identify the enzyme yield, the glucose conversion efficiency, and the mass losses between the unit operations as key process parameters, exhibiting a major influence on Y Ethanol-Process. CONCLUSIONS:Y Ethanol-Process is a measure for the efficiency of the lignocellulose-to-bioethanol process. Based on mass balance analysis, the correlations between single process parameters and Y Ethanol-Process were elucidated. The optimized laboratory scale SHCF process showed efficiencies similar to pilot scale plants. The herein presented process analysis can serve as effective and simple tool to identify key process parameters, bottlenecks, and future optimization targets.

journal_name

Biotechnol Biofuels

authors

Novy V,Longus K,Nidetzky B

doi

10.1186/s13068-015-0232-0

subject

Has Abstract

pub_date

2015-03-18 00:00:00

pages

46

issn

1754-6834

pii

232

journal_volume

8

pub_type

杂志文章
  • Efficient molasses fermentation under high salinity by inocula of marine and terrestrial origin.

    abstract:BACKGROUND:Molasses is a dense and saline by-product of the sugar agroindustry. Its high organic content potentially fuels a myriad of renewable products of industrial interest. However, the biotechnological exploitation of molasses is mainly hampered by the high concentration of salts, an issue that is nowadays tackle...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0701-8

    authors: Scoma A,Coma M,Kerckhof FM,Boon N,Rabaey K

    更新日期:2017-01-31 00:00:00

  • Astaxanthin overproduction in yeast by strain engineering and new gene target uncovering.

    abstract:Background:Astaxanthin is a natural carotenoid pigment with tremendous antioxidant activity and great commercial value. Microbial production of astaxanthin via metabolic engineering has become a promising alternative. Although great efforts have been conducted by tuning the heterologous modules and precursor pools, the...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1227-4

    authors: Jin J,Wang Y,Yao M,Gu X,Li B,Liu H,Ding M,Xiao W,Yuan Y

    更新日期:2018-08-23 00:00:00

  • High level expression of Acidothermus cellulolyticus β-1, 4-endoglucanase in transgenic rice enhances the hydrolysis of its straw by cultured cow gastric fluid.

    abstract:BACKGROUND:Large-scale production of effective cellulose hydrolytic enzymes is the key to the bioconversion of agricultural residues to ethanol. The goal of this study was to develop a rice plant as a bioreactor for the large-scale production of cellulose hydrolytic enzymes via genetic transformation, and to simultaneo...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-4-58

    authors: Chou HL,Dai Z,Hsieh CW,Ku MS

    更新日期:2011-12-10 00:00:00

  • What cell wall components are the best indicators for Miscanthus digestibility and conversion to ethanol following variable pretreatments?

    abstract:Background:Energy crops including Miscanthus provide a storable, portable energy source which can be used to complement a wide range of products and energy generation systems. Miscanthus is predominantly used in Europe as a combustion material for electricity generation but also has the potential for biochemical conver...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1066-3

    authors: Adams JMM,Winters AL,Hodgson EM,Gallagher JA

    更新日期:2018-03-14 00:00:00

  • Increased ethylene production by overexpressing phosphoenolpyruvate carboxylase in the cyanobacterium Synechocystis PCC 6803.

    abstract:Background:Cyanobacteria can be metabolically engineered to convert CO2 to fuels and chemicals such as ethylene. A major challenge in such efforts is to optimize carbon fixation and partition towards target molecules. Results:The efe gene encoding an ethylene-forming enzyme was introduced into a strain of the cyanobac...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-1653-y

    authors: Durall C,Lindberg P,Yu J,Lindblad P

    更新日期:2020-01-28 00:00:00

  • Evolutionary engineering in Saccharomyces cerevisiae reveals a TRK1-dependent potassium influx mechanism for propionic acid tolerance.

    abstract:Background:Propionic acid (PA), a key platform chemical produced as a by-product during petroleum refining, has been widely used as a food preservative and an important chemical intermediate in many industries. Microbial PA production through engineering yeast as a cell factory is a potentially sustainable alternative ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1427-6

    authors: Xu X,Williams TC,Divne C,Pretorius IS,Paulsen IT

    更新日期:2019-04-23 00:00:00

  • Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae.

    abstract:BACKGROUND:Lignocellulosic materials are abundant and among the most important potential sources for bioethanol production. Although the pretreatment of lignocellulose is necessary for efficient saccharification and fermentation, numerous by-products, including furan derivatives, weak acids, and phenolic compounds, are...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-1-3

    authors: Endo A,Nakamura T,Ando A,Tokuyasu K,Shima J

    更新日期:2008-04-15 00:00:00

  • Disruption of zinc finger DNA binding domain in catabolite repressor Mig1 increases growth rate, hyphal branching, and cellulase expression in hypercellulolytic fungus Penicillium funiculosum NCIM1228.

    abstract:Background:There is an urgent requirement for second-generation bio-based industries for economical yet efficient enzymatic cocktail to convert diverse cellulosic biomass into fermentable sugars. In our previous study, secretome of Penicillium funiculosum NCIM1228 showed high commercial potential by exhibiting high bio...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1011-5

    authors: Randhawa A,Ogunyewo OA,Eqbal D,Gupta M,Yazdani SS

    更新日期:2018-01-25 00:00:00

  • Clostridium acetobutylicum grows vegetatively in a biofilm rich in heteropolysaccharides and cytoplasmic proteins.

    abstract:Background:Biofilms are cell communities wherein cells are embedded in a self-produced extracellular polymeric substances (EPS). The biofilm of Clostridium acetobutylicum confers the cells superior phenotypes and has been extensively exploited to produce a variety of liquid biofuels and bulk chemicals. However, little ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1316-4

    authors: Liu D,Yang Z,Chen Y,Zhuang W,Niu H,Wu J,Ying H

    更新日期:2018-11-20 00:00:00

  • High cell density production of multimethyl-branched long-chain esters in Escherichia coli and determination of their physicochemical properties.

    abstract:BACKGROUND:Microbial synthesis of oleochemicals derived from native fatty acid (FA) metabolism has presented significant advances in recent years. Even so, native FA biosynthetic pathways often provide a narrow variety of usually linear hydrocarbons, thus yielding end products with limited structural diversity. To over...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0631-x

    authors: Menendez-Bravo S,Roulet J,Sabatini M,Comba S,Dunn R,Gramajo H,Arabolaza A

    更新日期:2016-10-14 00:00:00

  • Metabolic engineering of Clostridium beijerinckii to improve glycerol metabolism and furfural tolerance.

    abstract:Background:Inefficient utilization of glycerol by Clostridium beijerinckii (Cb) is a major impediment to adopting glycerol metabolism as a strategy for increasing NAD(P)H regeneration, which would in turn, alleviate the toxicity of lignocellulose-derived microbial inhibitory compounds (LDMICs, e.g., furfural), and impr...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1388-9

    authors: Agu CV,Ujor V,Ezeji TC

    更新日期:2019-03-09 00:00:00

  • Multifunctional elastin-like polypeptide renders β-glucosidase enzyme phase transition and high stability.

    abstract:Background:In the enzymatic conversion of biomass, it becomes an important issue to efficiently and cost-effectively degrade cellulose into fermentable glucose. β-Glucosidase (Bgluc), an essential member of cellulases, plays a critical role in cellulosic biomass degradation. The difficulty in improving the stability of...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1497-5

    authors: Zhou Y,Li X,Yan D,Addai Peprah F,Ji X,Fletcher EE,Wang Y,Wang Y,Gu J,Lin F,Shi H

    更新日期:2019-06-24 00:00:00

  • Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism.

    abstract:BACKGROUND:Isobutanol can be a better biofuel than ethanol due to its higher energy density and lower hygroscopicity. Furthermore, the branched-chain structure of isobutanol gives a higher octane number than the isomeric n-butanol. Saccharomyces cerevisiae was chosen as the production host because of its relative toler...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-4-21

    authors: Chen X,Nielsen KF,Borodina I,Kielland-Brandt MC,Karhumaa K

    更新日期:2011-07-28 00:00:00

  • Integration of pulp and paper technology with bioethanol production.

    abstract:BACKGROUND:Despite decades of work and billions of dollars of investments in laboratory and pilot plant projects, commercial production of cellulosic ethanol is only now beginning to emerge. Because of: (1)high technical risk coupled with; (2) high capital investment cost relative to ethanol product value, investors ha...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-13

    authors: Phillips RB,Jameel H,Chang HM

    更新日期:2013-01-28 00:00:00

  • Characterization of a glucose-tolerant β-glucosidase from Anoxybacillus sp. DT3-1.

    abstract:BACKGROUND:In general, biofuel production involves biomass pretreatment and enzymatic saccharification, followed by the subsequent sugar conversion to biofuel via fermentation. The crucial step in the production of biofuel from biomass is the enzymatic saccharification. Many of the commercial cellulase enzyme cocktails...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0587-x

    authors: Chan CS,Sin LL,Chan KG,Shamsir MS,Manan FA,Sani RK,Goh KM

    更新日期:2016-08-22 00:00:00

  • Toward facilitating microalgae cope with effluent from anaerobic digestion of kitchen waste: the art of agricultural phytohormones.

    abstract:BACKGROUND:Although numerous studies have used wastewater as substitutes to cultivate microalgae, most of them obtained weaker algal viability than standard media. Some studies demonstrated a promotion of phytohormones on algal growth in standard media. For exploiting a strategy to improve algal biomass accumulation in...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0759-3

    authors: Pei H,Jiang L,Hou Q,Yu Z

    更新日期:2017-03-24 00:00:00

  • Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste.

    abstract:: The considerable increase in biodiesel production worldwide in the last 5 years resulted in a stoichiometric increased coproduction of crude glycerol. As an excess of crude glycerol has been produced, its value on market was reduced and it is becoming a "waste-stream" instead of a valuable "coproduct". The developmen...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-5-48

    authors: Almeida JR,Fávaro LC,Quirino BF

    更新日期:2012-07-18 00:00:00

  • A novel transcription factor specifically regulates GH11 xylanase genes in Trichoderma reesei.

    abstract:BACKGROUND:The filamentous fungus Trichoderma reesei is widely utilized in industry for cellulase production, but its xylanase activity must be improved to enhance the accessibility of lignocellulose to cellulases. Several transcription factors play important roles in this progress; however, nearly all the reported tra...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0878-x

    authors: Liu R,Chen L,Jiang Y,Zou G,Zhou Z

    更新日期:2017-08-03 00:00:00

  • Deletion of meso-2,3-butanediol dehydrogenase gene budC for enhanced D-2,3-butanediol production in Bacillus licheniformis.

    abstract:BACKGROUND:D-2,3-butanediol has many industrial applications such as chiral reagents, solvents, anti-freeze agents, and low freezing point fuels. Traditional D-2,3-butanediol producing microorganisms, such as Klebsiella pneumonia and K. xoytoca, are pathogenic and not capable of producing D-2,3-butanediol at high optic...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-7-16

    authors: Qi G,Kang Y,Li L,Xiao A,Zhang S,Wen Z,Xu D,Chen S

    更新日期:2014-01-29 00:00:00

  • Lignosulfonate-mediated cellulase adsorption: enhanced enzymatic saccharification of lignocellulose through weakening nonproductive binding to lignin.

    abstract:BACKGROUND:Thermochemical pretreatment of lignocellulose is crucial to bioconversion in the fields of biorefinery and biofuels. However, the enzyme inhibitors in pretreatment hydrolysate make solid substrate washing and hydrolysate detoxification indispensable prior to enzymatic hydrolysis. Sulfite pretreatment to over...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-156

    authors: Wang Z,Zhu J,Fu Y,Qin M,Shao Z,Jiang J,Yang F

    更新日期:2013-11-05 00:00:00

  • Development of optimal steam explosion pretreatment and highly effective cell factory for bioconversion of grain vinegar residue to butanol.

    abstract:Background:The industrial vinegar residue (VR) from solid-state fermentation, mainly cereals and their bran, will be a potential feedstock for future biofuels because of their low cost and easy availability. However, utilization of VR for butanol production has not been as much optimized as other sources of lignocellul...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-01751-7

    authors: Xia M,Peng M,Xue D,Cheng Y,Li C,Wang D,Lu K,Zheng Y,Xia T,Song J,Wang M

    更新日期:2020-06-24 00:00:00

  • A new method to evaluate temperature vs. pH activity profiles for biotechnological relevant enzymes.

    abstract:BACKGROUND:Glycoside hydrolases are important for various industrial and scientific applications. Determination of their temperature as well as pH optima and range is crucial to evaluate whether an enzyme is suitable for application in a biotechnological process. These basic characteristics of enzymes are generally det...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0923-9

    authors: Herlet J,Kornberger P,Roessler B,Glanz J,Schwarz WH,Liebl W,Zverlov VV

    更新日期:2017-10-11 00:00:00

  • Organosolv pretreatment of sorghum bagasse using a low concentration of hydrophobic solvents such as 1-butanol or 1-pentanol.

    abstract:BACKGROUND:The primary components of lignocellulosic biomass such as sorghum bagasse are cellulose, hemicellulose, and lignin. Each component can be utilized as a sustainable resource for producing biofuels and bio-based products. However, due to their complicated structures, fractionation of lignocellulosic biomass co...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0427-z

    authors: Teramura H,Sasaki K,Oshima T,Matsuda F,Okamoto M,Shirai T,Kawaguchi H,Ogino C,Hirano K,Sazuka T,Kitano H,Kikuchi J,Kondo A

    更新日期:2016-02-02 00:00:00

  • A novel population balance model for the dilute acid hydrolysis of hemicellulose.

    abstract:BACKGROUND:Acid hydrolysis is a popular pretreatment for removing hemicellulose from lignocelluloses in order to produce a digestible substrate for enzymatic saccharification. In this work, a novel model for the dilute acid hydrolysis of hemicellulose within sugarcane bagasse is presented and calibrated against experim...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0211-5

    authors: Greenwood AA,Farrell TW,Zhang Z,O'Hara IM

    更新日期:2015-02-19 00:00:00

  • Metabolome analysis reveals a role for glyceraldehyde 3-phosphate dehydrogenase in the inhibition of C. thermocellum by ethanol.

    abstract:Background:Clostridium thermocellum is a promising microorganism for conversion of cellulosic biomass to biofuel, without added enzymes; however, the low ethanol titer produced by strains developed thus far is an obstacle to industrial application. Results:Here, we analyzed changes in the relative concentration of int...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0961-3

    authors: Tian L,Perot SJ,Stevenson D,Jacobson T,Lanahan AA,Amador-Noguez D,Olson DG,Lynd LR

    更新日期:2017-11-30 00:00:00

  • Metabolic engineering of Bacillus amyloliquefaciens for enhanced production of S-adenosylmethionine by coupling of an engineered S-adenosylmethionine pathway and the tricarboxylic acid cycle.

    abstract:Background:S-Adenosylmethionine (SAM) is a critical cofactor involved in many biochemical reactions. However, the low fermentation titer of SAM in methionine-free medium hampers commercial-scale production. The SAM synthesis pathway is specially related to the tricarboxylic acid (TCA) cycle in Bacillus amyloliquefacien...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1554-0

    authors: Ruan L,Li L,Zou D,Jiang C,Wen Z,Chen S,Deng Y,Wei X

    更新日期:2019-09-09 00:00:00

  • Structural evaluation and bioethanol production by simultaneous saccharification and fermentation with biodegraded triploid poplar.

    abstract:BACKGROUND:Pretreatment is a key step to decrease the recalcitrance of lignocelluloses and then increase the digestibility of cellulose in second-generation bioethanol production. In this study, wood chips from triploid poplar were biopretreated with white rot fungus Trametes velutina D10149. The effects of incubation ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-42

    authors: Wang K,Yang H,Wang W,Sun RC

    更新日期:2013-03-21 00:00:00

  • Unraveling the microbiome of a thermophilic biogas plant by metagenome and metatranscriptome analysis complemented by characterization of bacterial and archaeal isolates.

    abstract:BACKGROUND:One of the most promising technologies to sustainably produce energy and to mitigate greenhouse gas emissions from combustion of fossil energy carriers is the anaerobic digestion and biomethanation of organic raw material and waste towards biogas by highly diverse microbial consortia. In this context, the mi...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0581-3

    authors: Maus I,Koeck DE,Cibis KG,Hahnke S,Kim YS,Langer T,Kreubel J,Erhard M,Bremges A,Off S,Stolze Y,Jaenicke S,Goesmann A,Sczyrba A,Scherer P,König H,Schwarz WH,Zverlov VV,Liebl W,Pühler A,Schlüter A,Klocke M

    更新日期:2016-08-11 00:00:00

  • Bioflocculants' production in a biomass-degrading bacterium using untreated corn stover as carbon source and use of bioflocculants for microalgae harvest.

    abstract:Background:Bioflocculation has been developed as a cost-effective and environment-friendly method to harvest multiple microalgae. However, the high production cost of bioflocculants makes it difficult to scale up. In the current study, low-cost bioflocculants were produced from untreated corn stover by a biomass-degrad...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0987-6

    authors: Guo H,Hong C,Zheng B,Lu F,Jiang D,Qin W

    更新日期:2017-12-20 00:00:00

  • Insight into the role of α-arabinofuranosidase in biomass hydrolysis: cellulose digestibility and inhibition by xylooligomers.

    abstract:Background:α-l-Arabinofuranosidase (ARA), a debranching enzyme that can remove arabinose substituents from arabinoxylan and arabinoxylooligomers (AXOS), promotes the hydrolysis of the arabinoxylan fraction of biomass; however, the impact of ARA on the overall digestibility of cellulose is controversial. In this study, ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1412-0

    authors: Xin D,Chen X,Wen P,Zhang J

    更新日期:2019-03-22 00:00:00