Unraveling the microbiome of a thermophilic biogas plant by metagenome and metatranscriptome analysis complemented by characterization of bacterial and archaeal isolates.

Abstract:

BACKGROUND:One of the most promising technologies to sustainably produce energy and to mitigate greenhouse gas emissions from combustion of fossil energy carriers is the anaerobic digestion and biomethanation of organic raw material and waste towards biogas by highly diverse microbial consortia. In this context, the microbial systems ecology of thermophilic industrial-scale biogas plants is poorly understood. RESULTS:The microbial community structure of an exemplary thermophilic biogas plant was analyzed by a comprehensive approach comprising the analysis of the microbial metagenome and metatranscriptome complemented by the cultivation of hydrolytic and acido-/acetogenic Bacteria as well as methanogenic Archaea. Analysis of metagenome-derived 16S rRNA gene sequences revealed that the bacterial genera Defluviitoga (5.5 %), Halocella (3.5 %), Clostridium sensu stricto (1.9 %), Clostridium cluster III (1.5 %), and Tepidimicrobium (0.7 %) were most abundant. Among the Archaea, Methanoculleus (2.8 %) and Methanothermobacter (0.8 %) were predominant. As revealed by a metatranscriptomic 16S rRNA analysis, Defluviitoga (9.2 %), Clostridium cluster III (4.8 %), and Tepidanaerobacter (1.1 %) as well as Methanoculleus (5.7 %) mainly contributed to these sequence tags indicating their metabolic activity, whereas Hallocella (1.8 %), Tepidimicrobium (0.5 %), and Methanothermobacter (<0.1 %) were transcriptionally less active. By applying 11 different cultivation strategies, 52 taxonomically different microbial isolates representing the classes Clostridia, Bacilli, Thermotogae, Methanomicrobia and Methanobacteria were obtained. Genome analyses of isolates support the finding that, besides Clostridium thermocellum and Clostridium stercorarium, Defluviitoga tunisiensis participated in the hydrolysis of hemicellulose producing ethanol, acetate, and H2/CO2. The latter three metabolites are substrates for hydrogentrophic and acetoclastic archaeal methanogenesis. CONCLUSIONS:Obtained results showed that high abundance of microorganisms as deduced from metagenome analysis does not necessarily indicate high transcriptional or metabolic activity, and vice versa. Additionally, it appeared that the microbiome of the investigated thermophilic biogas plant comprised a huge number of up to now unknown and insufficiently characterized species.

journal_name

Biotechnol Biofuels

authors

Maus I,Koeck DE,Cibis KG,Hahnke S,Kim YS,Langer T,Kreubel J,Erhard M,Bremges A,Off S,Stolze Y,Jaenicke S,Goesmann A,Sczyrba A,Scherer P,König H,Schwarz WH,Zverlov VV,Liebl W,Pühler A,Schlüter A,Klocke M

doi

10.1186/s13068-016-0581-3

subject

Has Abstract

pub_date

2016-08-11 00:00:00

pages

171

issn

1754-6834

pii

581

journal_volume

9

pub_type

杂志文章
  • Characterization and engineering of a dual-function diacylglycerol acyltransferase in the oleaginous marine diatom Phaeodactylum tricornutum.

    abstract:Background:Photosynthetic oleaginous microalgae are promising feedstocks for biofuels. Acyl-CoA:diacylglycerol acyltransferases (DGATs) represent rich sources for engineering microalgal lipid production. The principal activity of DGATs has been defined as a single-function enzyme catalyzing the esterification of diacyl...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1029-8

    authors: Cui Y,Zhao J,Wang Y,Qin S,Lu Y

    更新日期:2018-02-09 00:00:00

  • Single-step bioconversion of lignocellulose to hydrogen using novel moderately thermophilic bacteria.

    abstract:BACKGROUND:Consolidated bioprocessing (CBP) of lignocellulosic biomass to hydrogen offers great potential for lower cost and higher efficiency compared to processes featuring dedicated cellulase production. Current studies on CBP-based hydrogen production mainly focus on using the thermophilic cellulolytic bacterium Cl...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-7-82

    authors: Cao GL,Zhao L,Wang AJ,Wang ZY,Ren NQ

    更新日期:2014-06-03 00:00:00

  • Microbial effects of part-stream low-frequency ultrasonic pretreatment on sludge anaerobic digestion as revealed by high-throughput sequencing-based metagenomics and metatranscriptomics.

    abstract:Background:Part-stream low-frequency ultrasound (LFUS) was one of the common practices for sludge disintegration in full-scale anaerobic digestion (AD) facilities. However, the effectiveness of part-stream LFUS treatment and its effect on AD microbiome have not been fully elucidated. Methods:Here we testified the effe...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1042-y

    authors: Xia Y,Yang C,Zhang T

    更新日期:2018-02-21 00:00:00

  • Integrated analysis of hydrothermal flow through pretreatment.

    abstract:UNLABELLED: BACKGROUND:The impact of hydrothermal flowthrough (FT) pretreatment severity on pretreatment and solubilization performance metrics was evaluated for three milled feedstocks (corn stover, bagasse, and poplar) and two conversion systems (simultaneous saccharification and fermentation using yeast and fungal ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-5-49

    authors: Archambault-Leger V,Shao X,Lynd LR

    更新日期:2012-07-19 00:00:00

  • Seed-specific suppression of ADP-glucose pyrophosphorylase in Camelina sativa increases seed size and weight.

    abstract:Background:Camelina (Camelina sativa L.) is a promising oilseed crop that may provide sustainable feedstock for biofuel production. One of the major drawbacks of Camelina is its smaller seeds compared to other major oil crops such as canola, which limit oil yield and may also pose challenges in successful seedling esta...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1334-2

    authors: Na G,Aryal N,Fatihi A,Kang J,Lu C

    更新日期:2018-12-18 00:00:00

  • Elucidating the role of ferrous ion cocatalyst in enhancing dilute acid pretreatment of lignocellulosic biomass.

    abstract:BACKGROUND:Recently developed iron cocatalyst enhancement of dilute acid pretreatment of biomass is a promising approach for enhancing sugar release from recalcitrant lignocellulosic biomass. However, very little is known about the underlying mechanisms of this enhancement. In the current study, our aim was to identify...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-4-48

    authors: Wei H,Donohoe BS,Vinzant TB,Ciesielski PN,Wang W,Gedvilas LM,Zeng Y,Johnson DK,Ding SY,Himmel ME,Tucker MP

    更新日期:2011-11-10 00:00:00

  • Production of high concentrated cellulosic ethanol by acetone/water oxidized pretreated beech wood.

    abstract:BACKGROUND:Lignocellulosic biomass is an abundant and inexpensive resource for biofuel production. Alongside its biotechnological conversion, pretreatment is essential to enable efficient enzymatic hydrolysis by making cellulose susceptible to cellulases. Wet oxidation of biomass, such as acetone/water oxidation, that ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0737-9

    authors: Katsimpouras C,Kalogiannis KG,Kalogianni A,Lappas AA,Topakas E

    更新日期:2017-02-28 00:00:00

  • SSF of steam-pretreated wheat straw with the addition of saccharified or fermented wheat meal in integrated bioethanol production.

    abstract:BACKGROUND:Integration of second-generation (2G) bioethanol production with existing first-generation (1G) production may facilitate commercial production of ethanol from cellulosic material. Since 2G hydrolysates have a low sugar concentration and 1G streams often have to be diluted prior to fermentation, mixing of st...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-169

    authors: Erdei B,Hancz D,Galbe M,Zacchi G

    更新日期:2013-11-29 00:00:00

  • Electron balancing under different sink conditions reveals positive effects on photon efficiency and metabolic activity of Synechocystis sp. PCC 6803.

    abstract:Background:Cyanobacteria are ideal model organisms to exploit photosynthetically derived electrons or fixed carbon for the biotechnological synthesis of high value compounds and energy carriers. Much effort is spent on the rational design of heterologous pathways to produce value-added chemicals. Much less focus is dra...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1378-y

    authors: Grund M,Jakob T,Wilhelm C,Bühler B,Schmid A

    更新日期:2019-02-27 00:00:00

  • Low temperature lignocellulose pretreatment: effects and interactions of pretreatment pH are critical for maximizing enzymatic monosaccharide yields from wheat straw.

    abstract:BACKGROUND:The recent development of improved enzymes and pentose-using yeast for cellulosic ethanol processes calls for new attention to the lignocellulose pretreatment step. This study assessed the influence of pretreatment pH, temperature, and time, and their interactions on the enzymatic glucose and xylose yields f...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-4-11

    authors: Pedersen M,Johansen KS,Meyer AS

    更新日期:2011-05-13 00:00:00

  • Transcriptional analysis of Clostridium beijerinckii NCIMB 8052 to elucidate role of furfural stress during acetone butanol ethanol fermentation.

    abstract:BACKGROUND:Furfural is the prevalent microbial inhibitor generated during pretreatment and hydrolysis of lignocellulose biomass to monomeric sugars, but the response of acetone butanol ethanol (ABE) producing Clostridium beijerinckii NCIMB 8052 to this compound at the molecular level is unknown. To discern the effect o...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-66

    authors: Zhang Y,Ezeji TC

    更新日期:2013-05-04 00:00:00

  • The extracellular endo-β-1,4-xylanase with multidomain from the extreme thermophile Caldicellulosiruptor lactoaceticus is specific for insoluble xylan degradation.

    abstract:Background:The extremely thermophilic bacterium Caldicellulosiruptor lactoaceticus can degrade and metabolize untreated lignocellulosic biomass containing xylan. The mechanism of the bacterium for degradation of insoluble xylan in untreated biomass has not been revealed. Results:In the present study, the only annotate...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1480-1

    authors: Jia X,Han Y

    更新日期:2019-06-08 00:00:00

  • Enzyme affinity to cell types in wheat straw (Triticum aestivum L.) before and after hydrothermal pretreatment.

    abstract:BACKGROUND:Wheat straw used for bioethanol production varies in enzymatic digestibility according to chemical structure and composition of cell walls and tissues. In this work, the two biologically different wheat straw organs, leaves and stems, are described together with the effects of hydrothermal pretreatment on ch...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-54

    authors: Hansen MA,Hidayat BJ,Mogensen KK,Jeppesen MD,Jørgensen B,Johansen KS,Thygesen LG

    更新日期:2013-04-16 00:00:00

  • Molecular and cellular mechanisms of neutral lipid accumulation in diatom following nitrogen deprivation.

    abstract:BACKGROUND:Nitrogen limitation can induce neutral lipid accumulation in microalgae, as well as inhibiting their growth. Therefore, to obtain cultures with both high biomass and high lipid contents, and explore the lipid accumulation mechanisms, we implemented nitrogen deprivation in a model diatom Phaeodactylum tricorn...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-67

    authors: Yang ZK,Niu YF,Ma YH,Xue J,Zhang MH,Yang WD,Liu JS,Lu SH,Guan Y,Li HY

    更新日期:2013-05-04 00:00:00

  • Comprehensive characterization of non-cellulosic recalcitrant cell wall carbohydrates in unhydrolyzed solids from AFEX-pretreated corn stover.

    abstract:BACKGROUND:Inefficient carbohydrate conversion has been an unsolved problem for various lignocellulosic biomass pretreatment technologies, including AFEX, dilute acid, and ionic liquid pretreatments. Previous work has shown 22% of total carbohydrates are typically unconverted, remaining as soluble or insoluble oligomer...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0757-5

    authors: Gunawan C,Xue S,Pattathil S,da Costa Sousa L,Dale BE,Balan V

    更新日期:2017-03-29 00:00:00

  • Metabolic engineering of Escherichia coli for production of n-butanol from crude glycerol.

    abstract:BACKGROUND:Crude glycerol in the waste stream of the biodiesel production process is an abundant and renewable resource. However, the glycerol-based industry is usually afflicted by the cost for refinement of crude glycerol. This issue can be addressed by developing a microbial process to convert crude glycerol to valu...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0857-2

    authors: Saini M,Wang ZW,Chiang CJ,Chao YP

    更新日期:2017-07-04 00:00:00

  • Leveraging transcription factors to speed cellobiose fermentation by Saccharomyces cerevisiae.

    abstract:BACKGROUND:Saccharomyces cerevisiae, a key organism used for the manufacture of renewable fuels and chemicals, has been engineered to utilize non-native sugars derived from plant cell walls, such as cellobiose and xylose. However, the rates and efficiencies of these non-native sugar fermentations pale in comparison wit...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-014-0126-6

    authors: Lin Y,Chomvong K,Acosta-Sampson L,Estrela R,Galazka JM,Kim SR,Jin YS,Cate JH

    更新日期:2014-08-27 00:00:00

  • Bioconversion of biodiesel refinery waste in the bioemulsifier by Trichosporon mycotoxinivorans CLA2.

    abstract:BACKGROUND:The microbial bioemulsifiers was surface active compounds, are more effective in stabilizing oil-in-water emulsions. The yeasts have been isolated to produce bioemulsifiers from vegetable oils and industrial wastes. RESULTS:Trichosporon mycotoxinivorans CLA2 is bioemulsifier-producing yeast strain isolated ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-5-29

    authors: de Souza Monteiro A,Domingues VS,Souza MV,Lula I,Gonçalves DB,de Siqueira EP,Dos Santos VL

    更新日期:2012-05-06 00:00:00

  • Production of xylooligosaccharides and monosaccharides from poplar by a two-step acetic acid and peroxide/acetic acid pretreatment.

    abstract:Background:Populus (poplar) tree species including hybrid varieties are considered as promising biomass feedstock for biofuels and biochemicals production due to their fast growing, short vegetative cycle, and widely distribution. In this work, poplar was pretreated with acetic acid (AC) to produce xylooligosaccharides...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1423-x

    authors: Wen P,Zhang T,Wang J,Lian Z,Zhang J

    更新日期:2019-04-15 00:00:00

  • Periodic-peristole agitation for process enhancement of butanol fermentation.

    abstract:BACKGROUND:Mass transfer plays an important role in determining the efficiency of the biofuel conversion. However, adverse effect of shear stress from traditional agitation inhibits the cell growth and production of biofuels. How to enhance the mass transfer with less adverse effect is considered as one of the importan...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0409-6

    authors: Xia ML,Wang L,Yang ZX,Chen HZ

    更新日期:2015-12-23 00:00:00

  • Xylan epitope profiling: an enhanced approach to study organ development-dependent changes in xylan structure, biosynthesis, and deposition in plant cell walls.

    abstract:Background:Xylan is a major hemicellulosic component in the cell walls of higher plants especially in the secondary walls of vascular cells which are playing important roles in physiological processes and overall mechanical strength. Being the second most abundant cell wall polymer after cellulose, xylan is an abundant...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0935-5

    authors: Peralta AG,Venkatachalam S,Stone SC,Pattathil S

    更新日期:2017-11-30 00:00:00

  • Combining inhibitor tolerance and D-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production.

    abstract:BACKGROUND:In addition to efficient pentose utilization, high inhibitor tolerance is a key trait required in any organism used for economically viable industrial bioethanol production with lignocellulose biomass. Although recent work has succeeded in establishing efficient xylose fermentation in robust industrial Sacch...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-120

    authors: Demeke MM,Dumortier F,Li Y,Broeckx T,Foulquié-Moreno MR,Thevelein JM

    更新日期:2013-08-26 00:00:00

  • Bacteriophage application restores ethanol fermentation characteristics disrupted by Lactobacillus fermentum.

    abstract:BACKGROUND:Contamination of corn mash by lactic acid bacteria (LAB) reduces the efficiency of the ethanol fermentation process. The industry relies heavily on antibiotics for contamination control and there is a need to develop alternative methods. The goals of this study were to determine the diversity and abundance o...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0325-9

    authors: Liu M,Bischoff KM,Gill JJ,Mire-Criscione MD,Berry JD,Young R,Summer EJ

    更新日期:2015-09-04 00:00:00

  • Lipase immobilized on functionalized superparamagnetic few-layer graphene oxide as an efficient nanobiocatalyst for biodiesel production from Chlorella vulgaris bio-oil.

    abstract:Background:Microalgae, due to its well-recognized advantages have gained renewed interest as potentially good feedstock for biodiesel. Production of fatty acid methyl esters (FAMEs) as a type of biodiesel was carried out from Chlorella vulgaris bio-oil. Biodiesel was produced in the presence of nano-biocatalysts compos...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-01688-x

    authors: Nematian T,Shakeri A,Salehi Z,Saboury AA

    更新日期:2020-03-20 00:00:00

  • Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism.

    abstract:BACKGROUND:Isobutanol can be a better biofuel than ethanol due to its higher energy density and lower hygroscopicity. Furthermore, the branched-chain structure of isobutanol gives a higher octane number than the isomeric n-butanol. Saccharomyces cerevisiae was chosen as the production host because of its relative toler...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-4-21

    authors: Chen X,Nielsen KF,Borodina I,Kielland-Brandt MC,Karhumaa K

    更新日期:2011-07-28 00:00:00

  • In vitro oxidative decarboxylation of free fatty acids to terminal alkenes by two new P450 peroxygenases.

    abstract:BACKGROUND:P450 fatty acid decarboxylases represented by the unusual CYP152 peroxygenase family member OleTJE have been receiving great attention recently since these P450 enzymes are able to catalyze the simple and direct production of 1-alkenes for potential applications in biofuels and biomaterials. To gain more mec...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0894-x

    authors: Xu H,Ning L,Yang W,Fang B,Wang C,Wang Y,Xu J,Collin S,Laeuffer F,Fourage L,Li S

    更新日期:2017-09-07 00:00:00

  • The influence of feedstock characteristics on enzyme production in Trichoderma reesei: a review on productivity, gene regulation and secretion profiles.

    abstract::Biorefineries, designed for the production of lignocellulose-based chemicals and fuels, are receiving increasing attention from the public, governments, and industries. A major obstacle for biorefineries to advance to commercial scale is the high cost of the enzymes required to derive the fermentable sugars from the f...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章,评审

    doi:10.1186/s13068-019-1571-z

    authors: Novy V,Nielsen F,Seiboth B,Nidetzky B

    更新日期:2019-10-08 00:00:00

  • Molasses wastewater treatment and lipid production at low temperature conditions by a microalgal mutant Scenedesmus sp. Z-4.

    abstract:BACKGROUND:Simultaneous wastewater treatment and lipid production by oleaginous microalgae show great potential to alleviate energy shortage and environmental pollution, because they exhibit tremendous advantages over traditional activated sludge. Currently, most research on wastewater treatment by microalgal are carri...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0797-x

    authors: Ma C,Wen H,Xing D,Pei X,Zhu J,Ren N,Liu B

    更新日期:2017-05-02 00:00:00

  • Direct bioconversion of brown algae into ethanol by thermophilic bacterium Defluviitalea phaphyphila.

    abstract:BACKGROUND:Brown algae are promising feedstocks for biofuel production with inherent advantages of no structural lignin, high growth rate, and no competition for land and fresh water. However, it is difficult for one microorganism to convert all components of brown algae with different oxidoreduction potentials to etha...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0494-1

    authors: Ji SQ,Wang B,Lu M,Li FL

    更新日期:2016-04-01 00:00:00

  • Potential of Zymomonas mobilis as an electricity producer in ethanol production.

    abstract:Background:Microbial fuel cell (MFC) convokes microorganism to convert biomass into electricity. However, most well-known electrogenic strains cannot directly use glucose to produce valuable products. Zymomonas mobilis, a promising bacterium for ethanol production, owns special Entner-Doudoroff pathway with less ATP an...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-01672-5

    authors: Geng BY,Cao LY,Li F,Song H,Liu CG,Zhao XQ,Bai FW

    更新日期:2020-03-05 00:00:00