Bioconversion of biodiesel refinery waste in the bioemulsifier by Trichosporon mycotoxinivorans CLA2.

Abstract:

BACKGROUND:The microbial bioemulsifiers was surface active compounds, are more effective in stabilizing oil-in-water emulsions. The yeasts have been isolated to produce bioemulsifiers from vegetable oils and industrial wastes. RESULTS:Trichosporon mycotoxinivorans CLA2 is bioemulsifier-producing yeast strain isolated from effluents of the dairy industry, with ability to emulsify different hydrophobic substrates. Bioemulsifier production (mg/L) and the emulsifying activity (E24) of this strain were optimized by response surface methodology using mineral minimal medium containing refinery waste as the carbon source, which consisted of diatomaceous earth impregnated with esters from filters used in biodiesel purification. The highest bioemulsifier production occurred in mineral minimal medium containing 75 g/L biodiesel residue and 5 g/L ammonium sulfate. The highest emulsifying activity was obtained in medium containing 58 g/L biodiesel refinery residue and 4.6 g/L ammonium sulfate, and under these conditions, the model estimated an emulsifying activity of 85%. Gas chromatography and mass spectrometry analysis suggested a bioemulsifier molecule consisting of monosaccharides, predominantly xylose and mannose, and a long chain aliphatic groups composed of octadecanoic acid and hexadecanoic acid at concentrations of 48.01% and 43.16%, respectively. The carbohydrate composition as determined by GC-MS of their alditol acetate derivatives showed a larger ratio of xylose (49.27%), mannose (39.91%), and glucose (10.81%). 1 H NMR spectra confirmed by COSY suggested high molecular weight, polymeric pattern, presence of monosaccharide's and long chain aliphatic groups in the bioemulsifier molecule. CONCLUSIONS:The biodiesel residue is an economical substrate, therefore seems to be very promising for the low-cost production of active emulsifiers in the emulsification of aromatics, aliphatic hydrocarbons, and kerosene.

journal_name

Biotechnol Biofuels

authors

de Souza Monteiro A,Domingues VS,Souza MV,Lula I,Gonçalves DB,de Siqueira EP,Dos Santos VL

doi

10.1186/1754-6834-5-29

subject

Has Abstract

pub_date

2012-05-06 00:00:00

pages

29

issue

1

issn

1754-6834

pii

1754-6834-5-29

journal_volume

5

pub_type

杂志文章
  • Stepwise metabolic engineering of Escherichia coli to produce triacylglycerol rich in medium-chain fatty acids.

    abstract:Background:Triacylglycerols (TAGs) rich in medium-chain fatty acids (MCFAs, C10-14 fatty acids) are valuable feedstocks for biofuels and chemicals. Natural sources of TAGs rich in MCFAs are restricted to a limited number of plant species, which are unsuitable for mass agronomic production. Instead, the modification of ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1177-x

    authors: Xu L,Wang L,Zhou XR,Chen WC,Singh S,Hu Z,Huang FH,Wan X

    更新日期:2018-06-25 00:00:00

  • Scale-up and evaluation of high solid ionic liquid pretreatment and enzymatic hydrolysis of switchgrass.

    abstract:BACKGROUND:Ionic liquid (IL) pretreatment is receiving significant attention as a potential process that enables fractionation of lignocellulosic biomass and produces high yields of fermentable sugars suitable for the production of renewable fuels. However, successful optimization and scale up of IL pretreatment involv...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-154

    authors: Li C,Tanjore D,He W,Wong J,Gardner JL,Sale KL,Simmons BA,Singh S

    更新日期:2013-10-25 00:00:00

  • Deep metagenome and metatranscriptome analyses of microbial communities affiliated with an industrial biogas fermenter, a cow rumen, and elephant feces reveal major differences in carbohydrate hydrolysis strategies.

    abstract:BACKGROUND:The diverse microbial communities in agricultural biogas fermenters are assumed to be well adapted for the anaerobic transformation of plant biomass to methane. Compared to natural systems, biogas reactors are limited in their hydrolytic potential. The reasons for this are not understood. RESULTS:In this pa...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0534-x

    authors: Güllert S,Fischer MA,Turaev D,Noebauer B,Ilmberger N,Wemheuer B,Alawi M,Rattei T,Daniel R,Schmitz RA,Grundhoff A,Streit WR

    更新日期:2016-06-07 00:00:00

  • Techno-economic evaluation of stillage treatment with anaerobic digestion in a softwood-to-ethanol process.

    abstract:BACKGROUND:Replacing the energy-intensive evaporation of stillage by anaerobic digestion is one way of decreasing the energy demand of the lignocellulosic biomass to the ethanol process. The biogas can be upgraded and sold as transportation fuel, injected directly into the gas grid or be incinerated on-site for combine...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-3-21

    authors: Barta Z,Reczey K,Zacchi G

    更新日期:2010-09-15 00:00:00

  • Physiological roles of pyruvate ferredoxin oxidoreductase and pyruvate formate-lyase in Thermoanaerobacterium saccharolyticum JW/SL-YS485.

    abstract:BACKGROUND:Thermoanaerobacter saccharolyticum is a thermophilic microorganism that has been engineered to produce ethanol at high titer (30-70 g/L) and greater than 90 % theoretical yield. However, few genes involved in pyruvate to ethanol production pathway have been unambiguously identified. In T. saccharolyticum, th...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0304-1

    authors: Zhou J,Olson DG,Lanahan AA,Tian L,Murphy SJ,Lo J,Lynd LR

    更新日期:2015-09-15 00:00:00

  • Disruption of the transcription factors Thi2p and Nrm1p alleviates the post-glucose effect on xylose utilization in Saccharomyces cerevisiae.

    abstract:Background:The recombinant Saccharomyces cerevisiae strains that acquired the ability to utilize xylose through metabolic and evolutionary engineering exhibit good performance when xylose is the sole carbon source in the medium (designated the X stage in the present work). However, the xylose consumption rate of strain...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1112-1

    authors: Wei S,Liu Y,Wu M,Ma T,Bai X,Hou J,Shen Y,Bao X

    更新日期:2018-04-16 00:00:00

  • Parallel metatranscriptome analyses of host and symbiont gene expression in the gut of the termite Reticulitermes flavipes.

    abstract:BACKGROUND:Termite lignocellulose digestion is achieved through a collaboration of host plus prokaryotic and eukaryotic symbionts. In the present work, we took a combined host and symbiont metatranscriptomic approach for investigating the digestive contributions of host and symbiont in the lower termite Reticulitermes ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-2-25

    authors: Tartar A,Wheeler MM,Zhou X,Coy MR,Boucias DG,Scharf ME

    更新日期:2009-10-15 00:00:00

  • T-6b allocates more assimilation product for oil synthesis and less for polysaccharide synthesis during the seed development of Arabidopsis thaliana.

    abstract:BACKGROUND:As an Agrobacterium tumefaciens T-DNA oncogene, T-6b induces the development of tumors and the enation syndrome in vegetative tissues of transgenic plants. Most of these effects are related to increases in soluble sugar contents. To verify the potential roles of T-6b in the distribution of carbon in developi...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0706-3

    authors: Jin Y,Hu J,Liu X,Ruan Y,Sun C,Liu C

    更新日期:2017-01-21 00:00:00

  • A green-light inducible lytic system for cyanobacterial cells.

    abstract:BACKGROUND:Cyanobacteria are an attractive candidate for the production of biofuel because of their ability to capture carbon dioxide by photosynthesis and grow on non-arable land. However, because huge quantities of water are required for cultivation, strict water management is one of the greatest issues in algae- and...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-7-56

    authors: Miyake K,Abe K,Ferri S,Nakajima M,Nakamura M,Yoshida W,Kojima K,Ikebukuro K,Sode K

    更新日期:2014-04-09 00:00:00

  • Facile isothermal solid acid catalyzed ionic liquid pretreatments to enhance the combined sugars production from Arundo donax Linn.

    abstract:BACKGROUND:Solid acid catalyzed inexpensive ionic liquid (IL) pretreatment is promising because of its effectiveness at decreasing biomass recalcitrance to subsequent enzymatic hydrolysis or in situ hydrolysis of carbohydrate oligomers. However, the conventional strategy was limited by the complex non-isothermal proces...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0589-8

    authors: You T,Shao L,Wang R,Zhang L,Xu F

    更新日期:2016-08-24 00:00:00

  • A techno-practical method for overcoming the biotoxicity and volatility obstacles of butanol and butyric acid during whole-cell catalysis by Gluconobacter oxydans.

    abstract:Background:Butyric acid is a platform chemical material, the production of which has been greatly stimulated by the diverse range of downstream applications in many industries. In particular, higher quality butyric acid used in food and medicine, is more dependent on microbiological production methods. Hence, the bio-o...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-01741-9

    authors: Hua X,Du G,Zhou X,Nawaz A,Ul Haq I,Xu Y

    更新日期:2020-06-03 00:00:00

  • Synergistic effects of mixing hybrid poplar and wheat straw biomass for bioconversion processes.

    abstract:BACKGROUND:Low cost of raw materials and good process yields are necessary for future lignocellulosic biomass biorefineries to be sustainable and profitable. A low cost feedstock will be diverse, changing as a function of seasonality and price and will most likely be available from multiple sources to the biorefinery. ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0414-9

    authors: Vera RM,Bura R,Gustafson R

    更新日期:2015-12-24 00:00:00

  • Bioprospecting of novel thermostable β-glucosidase from Bacillus subtilis RA10 and its application in biomass hydrolysis.

    abstract:Background:Saccharification is the most crucial and cost-intensive process in second generation biofuel production. The deficiency of β-glucosidase in commercial enzyme leads to incomplete biomass hydrolysis. The decomposition of biomass at high temperature environments leads us to isolate thermotolerant microbes with ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0932-8

    authors: Tiwari R,Singh PK,Singh S,Nain PKS,Nain L,Shukla P

    更新日期:2017-10-30 00:00:00

  • siRNAs regulate DNA methylation and interfere with gene and lncRNA expression in the heterozygous polyploid switchgrass.

    abstract:Background:Understanding the DNA methylome and its relationship with non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), is essential for elucidating the molecular mechanisms underlying key biological processes in plants. Few studies have examined the functional roles of the DNA methylome ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1202-0

    authors: Yan H,Bombarely A,Xu B,Frazier TP,Wang C,Chen P,Chen J,Hasing T,Cui C,Zhang X,Zhao B,Huang L

    更新日期:2018-07-24 00:00:00

  • A truncated form of the Carbon catabolite repressor 1 increases cellulase production in Trichoderma reesei.

    abstract:BACKGROUND:Rut-C30 is a cellulase-hyperproducing Trichoderma reesei strain and, consequently, became the ancestor of most industry strains used in the production of plant cell wall-degrading enzymes, in particular cellulases. Due to three rounds of undirected mutagenesis its genetic background differs from the wild-typ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-014-0129-3

    authors: Mello-de-Sousa TM,Gorsche R,Rassinger A,Poças-Fonseca MJ,Mach RL,Mach-Aigner AR

    更新日期:2014-09-11 00:00:00

  • Remembering Mary (1917 to 2008): editorial introduction to the thematic series on the life and lifework of Mary Mandels, first lady of cellulase research.

    abstract::Editorial introduction to the thematic series on the life and lifework of Mary Mandels. ...

    journal_title:Biotechnology for biofuels

    pub_type: 社论

    doi:10.1186/1754-6834-2-23

    authors: Bayer EA

    更新日期:2009-09-01 00:00:00

  • Bioelectrochemical production of hydrogen in an innovative pressure-retarded osmosis/microbial electrolysis cell system: experiments and modeling.

    abstract:BACKGROUND:While microbial electrolysis cells (MECs) can simultaneously produce bioelectrochemical hydrogen and treat wastewater, they consume considerable energy to overcome the unfavorable thermodynamics, which is not sustainable and economically feasible in practical applications. This study presents a proof-of-conc...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0305-0

    authors: Yuan H,Lu Y,Abu-Reesh IM,He Z

    更新日期:2015-08-14 00:00:00

  • Selecting β-glucosidases to support cellulases in cellulose saccharification.

    abstract:BACKGROUND:Enzyme end-product inhibition is a major challenge in the hydrolysis of lignocellulose at a high dry matter consistency. β-glucosidases (BGs) hydrolyze cellobiose into two molecules of glucose, thereby relieving the product inhibition of cellobiohydrolases (CBHs). However, BG inhibition by glucose will event...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-105

    authors: Teugjas H,Väljamäe P

    更新日期:2013-07-24 00:00:00

  • Molecular and cellular mechanisms of neutral lipid accumulation in diatom following nitrogen deprivation.

    abstract:BACKGROUND:Nitrogen limitation can induce neutral lipid accumulation in microalgae, as well as inhibiting their growth. Therefore, to obtain cultures with both high biomass and high lipid contents, and explore the lipid accumulation mechanisms, we implemented nitrogen deprivation in a model diatom Phaeodactylum tricorn...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-67

    authors: Yang ZK,Niu YF,Ma YH,Xue J,Zhang MH,Yang WD,Liu JS,Lu SH,Guan Y,Li HY

    更新日期:2013-05-04 00:00:00

  • De novo transcriptome sequencing and analysis revealed the molecular basis of rapid fat accumulation by black soldier fly (Hermetia illucens, L.) for development of insectival biodiesel.

    abstract:Background:Black soldier fly (BSF, Hermetia illucens L.) can efficiently degrade organic wastes and transform into a high fat containing insect biomass that could be used as feedstock for biodiesel production. Meanwhile, the molecular regulatory basis of fat accumulation by BSF is still unclear; it is necessary to iden...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1531-7

    authors: Zhu Z,Rehman KU,Yu Y,Liu X,Wang H,Tomberlin JK,Sze SH,Cai M,Zhang J,Yu Z,Zheng J,Zheng L

    更新日期:2019-08-09 00:00:00

  • Lignosulfonate-mediated cellulase adsorption: enhanced enzymatic saccharification of lignocellulose through weakening nonproductive binding to lignin.

    abstract:BACKGROUND:Thermochemical pretreatment of lignocellulose is crucial to bioconversion in the fields of biorefinery and biofuels. However, the enzyme inhibitors in pretreatment hydrolysate make solid substrate washing and hydrolysate detoxification indispensable prior to enzymatic hydrolysis. Sulfite pretreatment to over...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-156

    authors: Wang Z,Zhu J,Fu Y,Qin M,Shao Z,Jiang J,Yang F

    更新日期:2013-11-05 00:00:00

  • Metabolome analysis reveals a role for glyceraldehyde 3-phosphate dehydrogenase in the inhibition of C. thermocellum by ethanol.

    abstract:Background:Clostridium thermocellum is a promising microorganism for conversion of cellulosic biomass to biofuel, without added enzymes; however, the low ethanol titer produced by strains developed thus far is an obstacle to industrial application. Results:Here, we analyzed changes in the relative concentration of int...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0961-3

    authors: Tian L,Perot SJ,Stevenson D,Jacobson T,Lanahan AA,Amador-Noguez D,Olson DG,Lynd LR

    更新日期:2017-11-30 00:00:00

  • From wheat straw to bioethanol: integrative analysis of a separate hydrolysis and co-fermentation process with implemented enzyme production.

    abstract:BACKGROUND:Lignocellulosic ethanol has a high potential as renewable energy source. In recent years, much research effort has been spent to optimize parameters involved in the production process. Despite that, there is still a lack of comprehensive studies on process integration. Single parameters and process configura...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0232-0

    authors: Novy V,Longus K,Nidetzky B

    更新日期:2015-03-18 00:00:00

  • Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions.

    abstract:BACKGROUND:Decomposition of biomass for biogas production can be practiced under wet and dry fermentation conditions. In contrast to the dry fermentation technology, wet fermentation is characterized by a high liquid content and a relatively low total solid content. In this study, the composition and functional potenti...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-014-0193-8

    authors: Stolze Y,Zakrzewski M,Maus I,Eikmeyer F,Jaenicke S,Rottmann N,Siebner C,Pühler A,Schlüter A

    更新日期:2015-02-08 00:00:00

  • Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains.

    abstract:BACKGROUND:Due to its capacity to produce large amounts of cellulases, Trichoderma reesei is increasingly been researched in various fields of white biotechnology, especially in biofuel production from lignocellulosic biomass. The commercial enzyme mixtures produced at industrial scales are not well characterized, and ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-1-18

    authors: Herpoël-Gimbert I,Margeot A,Dolla A,Jan G,Mollé D,Lignon S,Mathis H,Sigoillot JC,Monot F,Asther M

    更新日期:2008-12-23 00:00:00

  • Physical and chemical differences between one-stage and two-stage hydrothermal pretreated hardwood substrates for use in cellulosic ethanol production.

    abstract:BACKGROUND:There are many different types of pretreatment carried out to prepare cellulosic substrates for fermentation. In this study, one- and two-stage hydrothermal pretreatment were carried out to determine their effects on subsequent fermentations. The two substrates were found to behave differently during ferment...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0446-9

    authors: Guilliams A,Pattathil S,Willies D,Richards M,Pu Y,Kandemkavil S,Wiswall E

    更新日期:2016-02-03 00:00:00

  • Meta-proteomic analysis of protein expression distinctive to electricity-generating biofilm communities in air-cathode microbial fuel cells.

    abstract:Background:Bioelectrochemical systems (BESs) harness electrons from microbial respiration to generate power or chemical products from a variety of organic feedstocks, including lignocellulosic biomass, fermentation byproducts, and wastewater sludge. In some BESs, such as microbial fuel cells (MFCs), bacteria living in ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1111-2

    authors: Chignell JF,De Long SK,Reardon KF

    更新日期:2018-04-23 00:00:00

  • Improving the enzymatic hydrolysis of thermo-mechanical fiber from Eucalyptus urophylla by a combination of hydrothermal pretreatment and alkali fractionation.

    abstract:BACKGROUND:The recalcitrance of lignocellulosic biomass is a major limitation for its conversion into biofuels by enzymatic hydrolysis. The use of a pretreatment technology is an essential step to diminish biomass recalcitrance for bioethanol production. In this study, a two-step pretreatment using hydrothermal pretrea...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-014-0116-8

    authors: Sun S,Cao X,Sun S,Xu F,Song X,Sun RC,Jones GL

    更新日期:2014-08-20 00:00:00

  • Generation of random mutants to improve light-use efficiency of Nannochloropsis gaditana cultures for biofuel production.

    abstract:BACKGROUND:The productivity of an algal culture depends on how efficiently it converts sunlight into biomass and lipids. Wild-type algae in their natural environment evolved to compete for light energy and maximize individual cell growth; however, in a photobioreactor, global productivity should be maximized. Improving...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0337-5

    authors: Perin G,Bellan A,Segalla A,Meneghesso A,Alboresi A,Morosinotto T

    更新日期:2015-09-25 00:00:00

  • Renewable synthesis of n-butyraldehyde from glucose by engineered Escherichia coli.

    abstract:Background:n-Butyraldehyde is a high-production volume chemical produced exclusively from hydroformylation of propylene. It is a versatile chemical used in the synthesis of diverse C4-C8 alcohols, carboxylic acids, esters, and amines. Its high demand and broad applications make it an ideal chemical to be produced from ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0978-7

    authors: Ku JT,Simanjuntak W,Lan EI

    更新日期:2017-12-04 00:00:00