Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions.

Abstract:

BACKGROUND:Decomposition of biomass for biogas production can be practiced under wet and dry fermentation conditions. In contrast to the dry fermentation technology, wet fermentation is characterized by a high liquid content and a relatively low total solid content. In this study, the composition and functional potential of a biogas-producing microbial community in an agricultural biogas reactor operating under wet fermentation conditions was analyzed by a metagenomic approach applying 454-pyrosequencing. The obtained metagenomic dataset and corresponding 16S rRNA gene amplicon sequences were compared to the previously sequenced comparable metagenome from a dry fermentation process, meeting explicitly identical boundary conditions regarding sample and community DNA preparation, sequencing technology, processing of sequence reads and data analyses by bioinformatics tools. RESULTS:High-throughput metagenome sequencing of community DNA from the wet fermentation process applying the pyrosequencing approach resulted in 1,532,780 reads, with an average read length of 397 bp, accounting for approximately 594 million bases of sequence information in total. Taxonomic comparison of the communities from wet and dry fermentation revealed similar microbial profiles with Bacteria being the predominant superkingdom, while the superkingdom Archaea was less abundant. In both biogas plants, the bacterial phyla Firmicutes, Bacteroidetes, Spirochaetes and Proteobacteria were identified with descending frequencies. Within the archaeal superkingdom, the phylum Euryarchaeota was most abundant with the dominant class Methanomicrobia. Functional profiles of the communities revealed that environmental gene tags representing methanogenesis enzymes were present in both biogas plants in comparable frequencies. 16S rRNA gene amplicon high-throughput sequencing disclosed differences in the sub-communities comprising methanogenic Archaea between both processes. Fragment recruitments of metagenomic reads to the reference genome of the archaeon Methanoculleus bourgensis MS2(T) revealed that dominant methanogens within the dry fermentation process were highly related to the reference. CONCLUSIONS:Although process parameters, substrates and technology differ between the wet and dry biogas fermentations analyzed in this study, community profiles are very similar at least at higher taxonomic ranks, illustrating that core community taxa perform key functions in biomass decomposition and methane synthesis. Regarding methanogenesis, Archaea highly related to the type strain M. bourgensis MS2(T) dominate the dry fermentation process, suggesting the adaptation of members belonging to this species to specific fermentation process parameters.

journal_name

Biotechnol Biofuels

authors

Stolze Y,Zakrzewski M,Maus I,Eikmeyer F,Jaenicke S,Rottmann N,Siebner C,Pühler A,Schlüter A

doi

10.1186/s13068-014-0193-8

subject

Has Abstract

pub_date

2015-02-08 00:00:00

pages

14

issn

1754-6834

pii

193

journal_volume

8

pub_type

杂志文章
  • RCO-3 and COL-26 form an external-to-internal module that regulates the dual-affinity glucose transport system in Neurospora crassa.

    abstract:BACKGROUND:Low- and high-affinity glucose transport system is a conserved strategy of microorganism to cope with environmental glucose fluctuation for their growth and competitiveness. In Neurospora crassa, the dual-affinity glucose transport system consists of a low-affinity glucose transporter GLT-1 and two high-affi...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-021-01877-2

    authors: Li J,Liu Q,Li J,Lin L,Li X,Zhang Y,Tian C

    更新日期:2021-01-28 00:00:00

  • Correction to: Pelagibaca bermudensis promotes biofuel competence of Tetraselmis striata in a broad range of abiotic stressors: dynamics of quorum-sensing precursors and strategic improvement in lipid productivity.

    abstract::[This corrects the article DOI: 10.1186/s13068-018-1097-9.]. ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章,已发布勘误

    doi:10.1186/s13068-018-1185-x

    authors: Patidar SK,Kim SH,Kim JH,Park J,Park BS,Han MS

    更新日期:2018-07-03 00:00:00

  • Peptide-mediated microalgae harvesting method for efficient biofuel production.

    abstract:BACKGROUND:Production of biofuels from microalgae has been recognized to be a promising route for a sustainable energy supply. However, the microalgae harvesting process is a bottleneck for industrialization because it is energy intensive. Thus, by displaying interactive protein factors on the cell wall, oleaginous mic...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0406-9

    authors: Maeda Y,Tateishi T,Niwa Y,Muto M,Yoshino T,Kisailus D,Tanaka T

    更新日期:2016-01-13 00:00:00

  • Transcriptomic response to prolonged ethanol production in the cyanobacterium Synechocystis sp. PCC6803.

    abstract:BACKGROUND:The production of biofuels in photosynthetic microalgae and cyanobacteria is a promising alternative to the generation of fuels from fossil resources. To be economically competitive, producer strains need to be established that synthesize the targeted product at high yield and over a long time. Engineering c...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-7-21

    authors: Dienst D,Georg J,Abts T,Jakorew L,Kuchmina E,Börner T,Wilde A,Dühring U,Enke H,Hess WR

    更新日期:2014-02-06 00:00:00

  • Effects of pH on steam explosion extraction of acetylated galactoglucomannan from Norway spruce.

    abstract:Background:Acetylated galactoglucomannan (AcGGM) is a complex hemicellulose found in softwoods such as Norway spruce (Picea abies). AcGGM has a large potential as a biorefinery feedstock and source of oligosaccharides for high-value industrial applications. Steam explosion is an effective method for extraction of carbo...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1300-z

    authors: Michalak L,Knutsen SH,Aarum I,Westereng B

    更新日期:2018-11-09 00:00:00

  • Improved simultaneous co-fermentation of glucose and xylose by Saccharomyces cerevisiae for efficient lignocellulosic biorefinery.

    abstract:Background:Lignocellulosic biorefinery offers economical and sustainable production of fuels and chemicals. Saccharomyces cerevisiae, a promising industrial host for biorefinery, has been intensively developed to expand its product profile. However, the sequential and slow conversion of xylose into target products rema...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1641-2

    authors: Hoang Nguyen Tran P,Ko JK,Gong G,Um Y,Lee SM

    更新日期:2020-01-22 00:00:00

  • Development of optimal steam explosion pretreatment and highly effective cell factory for bioconversion of grain vinegar residue to butanol.

    abstract:Background:The industrial vinegar residue (VR) from solid-state fermentation, mainly cereals and their bran, will be a potential feedstock for future biofuels because of their low cost and easy availability. However, utilization of VR for butanol production has not been as much optimized as other sources of lignocellul...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-01751-7

    authors: Xia M,Peng M,Xue D,Cheng Y,Li C,Wang D,Lu K,Zheng Y,Xia T,Song J,Wang M

    更新日期:2020-06-24 00:00:00

  • Crystal structure and biochemical characterization of the recombinant ThBgl, a GH1 β-glucosidase overexpressed in Trichoderma harzianum under biomass degradation conditions.

    abstract:BACKGROUND:The conversion of biomass-derived sugars via enzymatic hydrolysis for biofuel production is a challenge. Therefore, the search for microorganisms and key enzymes that increase the efficiency of the saccharification of cellulosic substrates remains an important and high-priority area of study. Trichoderma har...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0487-0

    authors: Santos CA,Zanphorlin LM,Crucello A,Tonoli CCC,Ruller R,Horta MAC,Murakami MT,de Souza AP

    更新日期:2016-03-22 00:00:00

  • Real-time understanding of lignocellulosic bioethanol fermentation by Raman spectroscopy.

    abstract:BACKGROUND:A substantial barrier to commercialization of lignocellulosic ethanol production is a lack of process specific sensors and associated control strategies that are essential for economic viability. Current sensors and analytical techniques require lengthy offline analysis or are easily fouled in situ. Raman sp...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-28

    authors: Ewanick SM,Thompson WJ,Marquardt BJ,Bura R

    更新日期:2013-02-20 00:00:00

  • Structural evaluation and bioethanol production by simultaneous saccharification and fermentation with biodegraded triploid poplar.

    abstract:BACKGROUND:Pretreatment is a key step to decrease the recalcitrance of lignocelluloses and then increase the digestibility of cellulose in second-generation bioethanol production. In this study, wood chips from triploid poplar were biopretreated with white rot fungus Trametes velutina D10149. The effects of incubation ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-42

    authors: Wang K,Yang H,Wang W,Sun RC

    更新日期:2013-03-21 00:00:00

  • Single-step bioconversion of lignocellulose to hydrogen using novel moderately thermophilic bacteria.

    abstract:BACKGROUND:Consolidated bioprocessing (CBP) of lignocellulosic biomass to hydrogen offers great potential for lower cost and higher efficiency compared to processes featuring dedicated cellulase production. Current studies on CBP-based hydrogen production mainly focus on using the thermophilic cellulolytic bacterium Cl...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-7-82

    authors: Cao GL,Zhao L,Wang AJ,Wang ZY,Ren NQ

    更新日期:2014-06-03 00:00:00

  • Metabolic engineering of Escherichia coli for production of n-butanol from crude glycerol.

    abstract:BACKGROUND:Crude glycerol in the waste stream of the biodiesel production process is an abundant and renewable resource. However, the glycerol-based industry is usually afflicted by the cost for refinement of crude glycerol. This issue can be addressed by developing a microbial process to convert crude glycerol to valu...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0857-2

    authors: Saini M,Wang ZW,Chiang CJ,Chao YP

    更新日期:2017-07-04 00:00:00

  • Integration of pulp and paper technology with bioethanol production.

    abstract:BACKGROUND:Despite decades of work and billions of dollars of investments in laboratory and pilot plant projects, commercial production of cellulosic ethanol is only now beginning to emerge. Because of: (1)high technical risk coupled with; (2) high capital investment cost relative to ethanol product value, investors ha...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-13

    authors: Phillips RB,Jameel H,Chang HM

    更新日期:2013-01-28 00:00:00

  • Production of 2,3-butanediol from glucose and cassava hydrolysates by metabolically engineered industrial polyploid Saccharomyces cerevisiae.

    abstract:Background:2,3-Butanediol (2,3-BDO) is a valuable chemical for industrial applications. Bacteria can produce 2,3-BDO with a high productivity, though most of their classification as pathogens makes them undesirable for the industrial-scale production. Though Saccharomyces cerevisiae (GRAS microorganism) was engineered ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1545-1

    authors: Lee YG,Seo JH

    更新日期:2019-08-29 00:00:00

  • Thermoanaerobacterium thermosaccharolyticum β-glucosidase: a glucose-tolerant enzyme with high specific activity for cellobiose.

    abstract:BACKGROUND:β-Glucosidase is an important component of the cellulase enzyme system. It does not only participate in cellulose degradation, it also plays an important role in hydrolyzing cellulose to fermentable glucose by relieving the inhibition of exoglucanase and endoglucanase from cellobiose. Therefore, the glucose-...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-5-31

    authors: Pei J,Pang Q,Zhao L,Fan S,Shi H

    更新日期:2012-07-11 00:00:00

  • Increased ethylene production by overexpressing phosphoenolpyruvate carboxylase in the cyanobacterium Synechocystis PCC 6803.

    abstract:Background:Cyanobacteria can be metabolically engineered to convert CO2 to fuels and chemicals such as ethylene. A major challenge in such efforts is to optimize carbon fixation and partition towards target molecules. Results:The efe gene encoding an ethylene-forming enzyme was introduced into a strain of the cyanobac...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-1653-y

    authors: Durall C,Lindberg P,Yu J,Lindblad P

    更新日期:2020-01-28 00:00:00

  • Dcm methylation is detrimental to plasmid transformation in Clostridium thermocellum.

    abstract:UNLABELLED: BACKGROUND:Industrial production of biofuels and other products by cellulolytic microorganisms is of interest but hindered by the nascent state of genetic tools. Although a genetic system for Clostridium thermocellum DSM1313 has recently been developed, available methods achieve relatively low efficiency a...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-5-30

    authors: Guss AM,Olson DG,Caiazza NC,Lynd LR

    更新日期:2012-05-06 00:00:00

  • Butanol production from laccase-pretreated brewer's spent grain.

    abstract:Background:Beer is the most popular alcoholic beverage worldwide. In the manufacture of beer, various by-products and residues are generated, and the most abundant (85% of total by-products) are spent grains. Thanks to its high (hemi)cellulose content (about 50% w/w dry weight), this secondary raw material is attractiv...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1383-1

    authors: Giacobbe S,Piscitelli A,Raganati F,Lettera V,Sannia G,Marzocchella A,Pezzella C

    更新日期:2019-03-05 00:00:00

  • A new method to evaluate temperature vs. pH activity profiles for biotechnological relevant enzymes.

    abstract:BACKGROUND:Glycoside hydrolases are important for various industrial and scientific applications. Determination of their temperature as well as pH optima and range is crucial to evaluate whether an enzyme is suitable for application in a biotechnological process. These basic characteristics of enzymes are generally det...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0923-9

    authors: Herlet J,Kornberger P,Roessler B,Glanz J,Schwarz WH,Liebl W,Zverlov VV

    更新日期:2017-10-11 00:00:00

  • Comparative secretome analysis of Trichoderma asperellum S4F8 and Trichoderma reesei Rut C30 during solid-state fermentation on sugarcane bagasse.

    abstract:BACKGROUND:The lignocellulosic enzymes of Trichoderma species have received particular attention with regard to biomass conversion to biofuels, but the production cost of these enzymes remains a significant hurdle for their commercial application. In this study, we quantitatively compared the lignocellulolytic enzyme p...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-172

    authors: Marx IJ,van Wyk N,Smit S,Jacobson D,Viljoen-Bloom M,Volschenk H

    更新日期:2013-11-29 00:00:00

  • Enzyme affinity to cell types in wheat straw (Triticum aestivum L.) before and after hydrothermal pretreatment.

    abstract:BACKGROUND:Wheat straw used for bioethanol production varies in enzymatic digestibility according to chemical structure and composition of cell walls and tissues. In this work, the two biologically different wheat straw organs, leaves and stems, are described together with the effects of hydrothermal pretreatment on ch...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-54

    authors: Hansen MA,Hidayat BJ,Mogensen KK,Jeppesen MD,Jørgensen B,Johansen KS,Thygesen LG

    更新日期:2013-04-16 00:00:00

  • Allelopathy as a potential strategy to improve microalgae cultivation.

    abstract::One of the main obstacles for continuous productivity in microalgae cultivation is the presence of biological contaminants capable of eliminating large numbers of cells in a matter of days or even hours. However, a number of strategies are being used to combat and prevent contamination in microalgae cultivation. These...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-152

    authors: Bacellar Mendes LB,Vermelho AB

    更新日期:2013-10-21 00:00:00

  • Characterization and engineering of a dual-function diacylglycerol acyltransferase in the oleaginous marine diatom Phaeodactylum tricornutum.

    abstract:Background:Photosynthetic oleaginous microalgae are promising feedstocks for biofuels. Acyl-CoA:diacylglycerol acyltransferases (DGATs) represent rich sources for engineering microalgal lipid production. The principal activity of DGATs has been defined as a single-function enzyme catalyzing the esterification of diacyl...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1029-8

    authors: Cui Y,Zhao J,Wang Y,Qin S,Lu Y

    更新日期:2018-02-09 00:00:00

  • A complete annotation of the chromosomes of the cellulase producer Trichoderma reesei provides insights in gene clusters, their expression and reveals genes required for fitness.

    abstract:BACKGROUND:Investigations on a few eukaryotic model organisms showed that many genes are non-randomly distributed on chromosomes. In addition, chromosome ends frequently possess genes that are important for the fitness of the organisms. Trichoderma reesei is an industrial producer of enzymes for food, feed and biorefin...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0488-z

    authors: Druzhinina IS,Kopchinskiy AG,Kubicek EM,Kubicek CP

    更新日期:2016-03-29 00:00:00

  • A bionic system with Fenton reaction and bacteria as a model for bioprocessing lignocellulosic biomass.

    abstract:Background:The recalcitrance of lignocellulosic biomass offers a series of challenges for biochemical processing into biofuels and bio-products. For the first time, we address these challenges with a biomimetic system via a mild yet rapid Fenton reaction and lignocellulose-degrading bacterial strain Cupriavidus basilen...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1035-x

    authors: Zhang K,Si M,Liu D,Zhuo S,Liu M,Liu H,Yan X,Shi Y

    更新日期:2018-02-08 00:00:00

  • Bioconversion of biodiesel refinery waste in the bioemulsifier by Trichosporon mycotoxinivorans CLA2.

    abstract:BACKGROUND:The microbial bioemulsifiers was surface active compounds, are more effective in stabilizing oil-in-water emulsions. The yeasts have been isolated to produce bioemulsifiers from vegetable oils and industrial wastes. RESULTS:Trichosporon mycotoxinivorans CLA2 is bioemulsifier-producing yeast strain isolated ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-5-29

    authors: de Souza Monteiro A,Domingues VS,Souza MV,Lula I,Gonçalves DB,de Siqueira EP,Dos Santos VL

    更新日期:2012-05-06 00:00:00

  • From wheat straw to bioethanol: integrative analysis of a separate hydrolysis and co-fermentation process with implemented enzyme production.

    abstract:BACKGROUND:Lignocellulosic ethanol has a high potential as renewable energy source. In recent years, much research effort has been spent to optimize parameters involved in the production process. Despite that, there is still a lack of comprehensive studies on process integration. Single parameters and process configura...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0232-0

    authors: Novy V,Longus K,Nidetzky B

    更新日期:2015-03-18 00:00:00

  • Increasing n-butanol production with Saccharomyces cerevisiae by optimizing acetyl-CoA synthesis, NADH levels and trans-2-enoyl-CoA reductase expression.

    abstract:BACKGROUND:n-Butanol can serve as an excellent gasoline substitute. Naturally, it is produced by some Clostridia species which, however, exhibit only limited suitability for industrial n-butanol production. The yeast Saccharomyces cerevisiae would be an ideal host due to its high robustness in fermentation processes. N...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0673-0

    authors: Schadeweg V,Boles E

    更新日期:2016-11-25 00:00:00

  • Lignolytic-consortium omics analyses reveal novel genomes and pathways involved in lignin modification and valorization.

    abstract:Background:Lignin is a heterogeneous polymer representing a renewable source of aromatic and phenolic bio-derived products for the chemical industry. However, the inherent structural complexity and recalcitrance of lignin makes its conversion into valuable chemicals a challenge. Natural microbial communities produce bi...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1073-4

    authors: Moraes EC,Alvarez TM,Persinoti GF,Tomazetto G,Brenelli LB,Paixão DAA,Ematsu GC,Aricetti JA,Caldana C,Dixon N,Bugg TDH,Squina FM

    更新日期:2018-03-22 00:00:00

  • Reduced use of phosphorus and water in sequential dark fermentation and anaerobic digestion of wheat straw and the application of ensiled steam-pretreated lucerne as a macronutrient provider in anaerobic digestion.

    abstract:Background:Current EU directives demand increased use of renewable fuels in the transportation sector but restrict governmental support for production of biofuels produced from crops. The use of intercropped lucerne and wheat may comply with the directives. In the current study, the combination of ensiled lucerne (Medi...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1280-z

    authors: Byrne E,Kovacs K,van Niel EWJ,Willquist K,Svensson SE,Kreuger E

    更新日期:2018-10-11 00:00:00