A complete annotation of the chromosomes of the cellulase producer Trichoderma reesei provides insights in gene clusters, their expression and reveals genes required for fitness.

Abstract:

BACKGROUND:Investigations on a few eukaryotic model organisms showed that many genes are non-randomly distributed on chromosomes. In addition, chromosome ends frequently possess genes that are important for the fitness of the organisms. Trichoderma reesei is an industrial producer of enzymes for food, feed and biorefinery production. Its seven chromosomes have recently been assembled, thus making an investigation of its chromosome architecture possible. RESULTS:We manually annotated and mapped 9194 ORFs on their respective chromosomes and investigated the clustering of the major gene categories and of genes encoding carbohydrate-active enzymes (CAZymes), and the relationship between clustering and expression. Genes responsible for RNA processing and modification, amino acid metabolism, transcription, translation and ribosomal structure and biogenesis indeed showed loose clustering, but this had no impact on their expression. A third of the genes encoding CAZymes also occurred in loose clusters that also contained a high number of genes encoding small secreted cysteine-rich proteins. Five CAZyme clusters were located less than 50 kb apart from the chromosome ends. These genes exhibited the lowest basal (but not induced) expression level, which correlated with an enrichment of H3K9 methylation in the terminal 50 kb areas indicating gene silencing. No differences were found in the expression of CAZyme genes present in other parts of the chromosomes. The putative subtelomeric areas were also enriched in genes encoding secreted proteases, amino acid permeases, enzyme clusters for polyketide synthases (PKS)-non-ribosomal peptide synthase (NRPS) fusion proteins (PKS-NRPS) and proteins involved in iron scavenging. They were strongly upregulated during conidiation and interaction with other fungi. CONCLUSIONS:Our findings suggest that gene clustering on the T. reesei chromosomes occurs but generally has no impact on their expression. CAZyme genes, located in subtelomers, however, exhibited a much lower basal expression level. The gene inventory of the subtelomers suggests a major role of competition for nitrogen and iron supported by antibiosis for the fitness of T. reesei. The availability of fully annotated chromosomes will facilitate the use of genetic crossings in identifying still unknown genes responsible for specific traits of T. reesei.

journal_name

Biotechnol Biofuels

authors

Druzhinina IS,Kopchinskiy AG,Kubicek EM,Kubicek CP

doi

10.1186/s13068-016-0488-z

subject

Has Abstract

pub_date

2016-03-29 00:00:00

pages

75

issn

1754-6834

pii

488

journal_volume

9

pub_type

杂志文章
  • Physical and chemical differences between one-stage and two-stage hydrothermal pretreated hardwood substrates for use in cellulosic ethanol production.

    abstract:BACKGROUND:There are many different types of pretreatment carried out to prepare cellulosic substrates for fermentation. In this study, one- and two-stage hydrothermal pretreatment were carried out to determine their effects on subsequent fermentations. The two substrates were found to behave differently during ferment...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0446-9

    authors: Guilliams A,Pattathil S,Willies D,Richards M,Pu Y,Kandemkavil S,Wiswall E

    更新日期:2016-02-03 00:00:00

  • Correction to: Pelagibaca bermudensis promotes biofuel competence of Tetraselmis striata in a broad range of abiotic stressors: dynamics of quorum-sensing precursors and strategic improvement in lipid productivity.

    abstract::[This corrects the article DOI: 10.1186/s13068-018-1097-9.]. ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章,已发布勘误

    doi:10.1186/s13068-018-1185-x

    authors: Patidar SK,Kim SH,Kim JH,Park J,Park BS,Han MS

    更新日期:2018-07-03 00:00:00

  • Propionic acid production from corn stover hydrolysate by Propionibacterium acidipropionici.

    abstract:BACKGROUND:The production of value-added chemicals alongside biofuels from lignocellulosic hydrolysates is critical for developing economically viable biorefineries. Here, the production of propionic acid (PA), a potential building block for C3-based chemicals, from corn stover hydrolysate is investigated using the nat...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0884-z

    authors: Wang X,Salvachúa D,Sànchez I Nogué V,Michener WE,Bratis AD,Dorgan JR,Beckham GT

    更新日期:2017-08-17 00:00:00

  • Peptide-mediated microalgae harvesting method for efficient biofuel production.

    abstract:BACKGROUND:Production of biofuels from microalgae has been recognized to be a promising route for a sustainable energy supply. However, the microalgae harvesting process is a bottleneck for industrialization because it is energy intensive. Thus, by displaying interactive protein factors on the cell wall, oleaginous mic...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0406-9

    authors: Maeda Y,Tateishi T,Niwa Y,Muto M,Yoshino T,Kisailus D,Tanaka T

    更新日期:2016-01-13 00:00:00

  • Renewable synthesis of n-butyraldehyde from glucose by engineered Escherichia coli.

    abstract:Background:n-Butyraldehyde is a high-production volume chemical produced exclusively from hydroformylation of propylene. It is a versatile chemical used in the synthesis of diverse C4-C8 alcohols, carboxylic acids, esters, and amines. Its high demand and broad applications make it an ideal chemical to be produced from ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0978-7

    authors: Ku JT,Simanjuntak W,Lan EI

    更新日期:2017-12-04 00:00:00

  • The impact of alterations in lignin deposition on cellulose organization of the plant cell wall.

    abstract:BACKGROUND:Coordination of synthesis and assembly of the polymeric components of cell walls is essential for plant growth and development. Given the degree of co-mingling and cross-linking among cell wall components, cellulose organization must be dependent on the organization of other polymers such as lignin. Here we ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0540-z

    authors: Liu J,Kim JI,Cusumano JC,Chapple C,Venugopalan N,Fischetti RF,Makowski L

    更新日期:2016-06-17 00:00:00

  • Bacteriophage application restores ethanol fermentation characteristics disrupted by Lactobacillus fermentum.

    abstract:BACKGROUND:Contamination of corn mash by lactic acid bacteria (LAB) reduces the efficiency of the ethanol fermentation process. The industry relies heavily on antibiotics for contamination control and there is a need to develop alternative methods. The goals of this study were to determine the diversity and abundance o...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0325-9

    authors: Liu M,Bischoff KM,Gill JJ,Mire-Criscione MD,Berry JD,Young R,Summer EJ

    更新日期:2015-09-04 00:00:00

  • Freshwater microalgae harvested via flocculation induced by pH decrease.

    abstract:BACKGROUND:Recent studies have demonstrated that microalga has been widely regarded as one of the most promising raw materials of biofuels. However, lack of an economical, efficient and convenient method to harvest microalgae is a bottleneck to boost their full-scale application. Many methods of harvesting microalgae, ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-98

    authors: Liu J,Zhu Y,Tao Y,Zhang Y,Li A,Li T,Sang M,Zhang C

    更新日期:2013-07-09 00:00:00

  • Lytic polysaccharide monooxygenases and other oxidative enzymes are abundantly secreted by Aspergillus nidulans grown on different starches.

    abstract:BACKGROUND:Starch is the second most abundant plant-derived biomass and a major feedstock in non-food industrial applications and first generation biofuel production. In contrast to lignocellulose, detailed insight into fungal degradation of starch is currently lacking. This study explores the secretomes of Aspergillus...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0604-0

    authors: Nekiunaite L,Arntzen MØ,Svensson B,Vaaje-Kolstad G,Abou Hachem M

    更新日期:2016-09-01 00:00:00

  • Organosolv pretreatment of sorghum bagasse using a low concentration of hydrophobic solvents such as 1-butanol or 1-pentanol.

    abstract:BACKGROUND:The primary components of lignocellulosic biomass such as sorghum bagasse are cellulose, hemicellulose, and lignin. Each component can be utilized as a sustainable resource for producing biofuels and bio-based products. However, due to their complicated structures, fractionation of lignocellulosic biomass co...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0427-z

    authors: Teramura H,Sasaki K,Oshima T,Matsuda F,Okamoto M,Shirai T,Kawaguchi H,Ogino C,Hirano K,Sazuka T,Kitano H,Kikuchi J,Kondo A

    更新日期:2016-02-02 00:00:00

  • Nitrogen and phosphorus removal from anaerobically digested wastewater by microalgae cultured in a novel membrane photobioreactor.

    abstract:Background:With the further development of anaerobic digestion, an increasing output of anaerobically digested wastewater (ADW), which typically contained high concentrations of ammonium, phosphate, and suspended solids, was inevitable. Microalgae cultivation offered a potential waste-to-value strategy to reduce the hi...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1190-0

    authors: Chen X,Li Z,He N,Zheng Y,Li H,Wang H,Wang Y,Lu Y,Li Q,Peng Y

    更新日期:2018-07-09 00:00:00

  • Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations.

    abstract:BACKGROUND:The model bacterium Clostridium cellulolyticum efficiently degrades crystalline cellulose and hemicellulose, using cellulosomes to degrade lignocellulosic biomass. Although it imports and ferments both pentose and hexose sugars to produce a mixture of ethanol, acetate, lactate, H2 and CO2, the proportion of ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-5-2

    authors: Li Y,Tschaplinski TJ,Engle NL,Hamilton CY,Rodriguez M Jr,Liao JC,Schadt CW,Guss AM,Yang Y,Graham DE

    更新日期:2012-01-04 00:00:00

  • A novel and simple approach to the good process performance of methane recovery from lignocellulosic biomass alone.

    abstract:BACKGROUND:Solid-state anaerobic digestion (SS-AD) has been increasingly used for lignocellulosic biomass treatment. However, the separate reactor required for pretreatment prior digestion, poor treatment capacity, and process stability inhibit further development of the SS-AD. In this study, a novel method called SS-A...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0530-1

    authors: Yao Y,Chen S

    更新日期:2016-06-01 00:00:00

  • Production of xylooligosaccharides and monosaccharides from poplar by a two-step acetic acid and peroxide/acetic acid pretreatment.

    abstract:Background:Populus (poplar) tree species including hybrid varieties are considered as promising biomass feedstock for biofuels and biochemicals production due to their fast growing, short vegetative cycle, and widely distribution. In this work, poplar was pretreated with acetic acid (AC) to produce xylooligosaccharides...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1423-x

    authors: Wen P,Zhang T,Wang J,Lian Z,Zhang J

    更新日期:2019-04-15 00:00:00

  • Allelopathy as a potential strategy to improve microalgae cultivation.

    abstract::One of the main obstacles for continuous productivity in microalgae cultivation is the presence of biological contaminants capable of eliminating large numbers of cells in a matter of days or even hours. However, a number of strategies are being used to combat and prevent contamination in microalgae cultivation. These...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-152

    authors: Bacellar Mendes LB,Vermelho AB

    更新日期:2013-10-21 00:00:00

  • The influence of feedstock characteristics on enzyme production in Trichoderma reesei: a review on productivity, gene regulation and secretion profiles.

    abstract::Biorefineries, designed for the production of lignocellulose-based chemicals and fuels, are receiving increasing attention from the public, governments, and industries. A major obstacle for biorefineries to advance to commercial scale is the high cost of the enzymes required to derive the fermentable sugars from the f...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章,评审

    doi:10.1186/s13068-019-1571-z

    authors: Novy V,Nielsen F,Seiboth B,Nidetzky B

    更新日期:2019-10-08 00:00:00

  • One-step process of hydrothermal and alkaline treatment of wheat straw for improving the enzymatic saccharification.

    abstract:Background:To increase the production of bioethanol, a two-step process based on hydrothermal and dilute alkaline treatment was applied to reduce the natural resistance of biomass. However, the process required a large amount of water and a long operation time due to the solid/liquid separation before the alkaline trea...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1140-x

    authors: Sun S,Zhang L,Liu F,Fan X,Sun RC

    更新日期:2018-05-12 00:00:00

  • siRNAs regulate DNA methylation and interfere with gene and lncRNA expression in the heterozygous polyploid switchgrass.

    abstract:Background:Understanding the DNA methylome and its relationship with non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), is essential for elucidating the molecular mechanisms underlying key biological processes in plants. Few studies have examined the functional roles of the DNA methylome ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1202-0

    authors: Yan H,Bombarely A,Xu B,Frazier TP,Wang C,Chen P,Chen J,Hasing T,Cui C,Zhang X,Zhao B,Huang L

    更新日期:2018-07-24 00:00:00

  • A truncated form of the Carbon catabolite repressor 1 increases cellulase production in Trichoderma reesei.

    abstract:BACKGROUND:Rut-C30 is a cellulase-hyperproducing Trichoderma reesei strain and, consequently, became the ancestor of most industry strains used in the production of plant cell wall-degrading enzymes, in particular cellulases. Due to three rounds of undirected mutagenesis its genetic background differs from the wild-typ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-014-0129-3

    authors: Mello-de-Sousa TM,Gorsche R,Rassinger A,Poças-Fonseca MJ,Mach RL,Mach-Aigner AR

    更新日期:2014-09-11 00:00:00

  • A bionic system with Fenton reaction and bacteria as a model for bioprocessing lignocellulosic biomass.

    abstract:Background:The recalcitrance of lignocellulosic biomass offers a series of challenges for biochemical processing into biofuels and bio-products. For the first time, we address these challenges with a biomimetic system via a mild yet rapid Fenton reaction and lignocellulose-degrading bacterial strain Cupriavidus basilen...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1035-x

    authors: Zhang K,Si M,Liu D,Zhuo S,Liu M,Liu H,Yan X,Shi Y

    更新日期:2018-02-08 00:00:00

  • Oleaginous yeast platform for producing biofuels via co-solvent hydrothermal liquefaction.

    abstract:BACKGROUND:Oleaginous microorganisms are attractive feedstock for production of liquid biofuels. Direct hydrothermal liquefaction (HTL) is an efficient route that converts whole, wet biomass into an energy-dense liquid fuel precursor, called 'biocrude'. HTL represents a promising alternative to conventional lipid extra...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0345-5

    authors: Jena U,McCurdy AT,Warren A,Summers H,Ledbetter RN,Hoekman SK,Seefeldt LC,Quinn JC

    更新日期:2015-10-13 00:00:00

  • Engineering Geobacillus thermoglucosidasius for direct utilisation of holocellulose from wheat straw.

    abstract:Background:A consolidated bioprocessing (CBP), where lignocellulose is converted into the desired product(s) in a single fermentative step without the addition of expensive degradative enzymes, represents the ideal solution of renewable routes to chemicals and fuels. Members of the genus Geobacillus are able to grow at...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1540-6

    authors: Bashir Z,Sheng L,Anil A,Lali A,Minton NP,Zhang Y

    更新日期:2019-08-20 00:00:00

  • A green-light inducible lytic system for cyanobacterial cells.

    abstract:BACKGROUND:Cyanobacteria are an attractive candidate for the production of biofuel because of their ability to capture carbon dioxide by photosynthesis and grow on non-arable land. However, because huge quantities of water are required for cultivation, strict water management is one of the greatest issues in algae- and...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-7-56

    authors: Miyake K,Abe K,Ferri S,Nakajima M,Nakamura M,Yoshida W,Kojima K,Ikebukuro K,Sode K

    更新日期:2014-04-09 00:00:00

  • Thermoanaerobacterium thermosaccharolyticum β-glucosidase: a glucose-tolerant enzyme with high specific activity for cellobiose.

    abstract:BACKGROUND:β-Glucosidase is an important component of the cellulase enzyme system. It does not only participate in cellulose degradation, it also plays an important role in hydrolyzing cellulose to fermentable glucose by relieving the inhibition of exoglucanase and endoglucanase from cellobiose. Therefore, the glucose-...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-5-31

    authors: Pei J,Pang Q,Zhao L,Fan S,Shi H

    更新日期:2012-07-11 00:00:00

  • Reduced use of phosphorus and water in sequential dark fermentation and anaerobic digestion of wheat straw and the application of ensiled steam-pretreated lucerne as a macronutrient provider in anaerobic digestion.

    abstract:Background:Current EU directives demand increased use of renewable fuels in the transportation sector but restrict governmental support for production of biofuels produced from crops. The use of intercropped lucerne and wheat may comply with the directives. In the current study, the combination of ensiled lucerne (Medi...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1280-z

    authors: Byrne E,Kovacs K,van Niel EWJ,Willquist K,Svensson SE,Kreuger E

    更新日期:2018-10-11 00:00:00

  • What cell wall components are the best indicators for Miscanthus digestibility and conversion to ethanol following variable pretreatments?

    abstract:Background:Energy crops including Miscanthus provide a storable, portable energy source which can be used to complement a wide range of products and energy generation systems. Miscanthus is predominantly used in Europe as a combustion material for electricity generation but also has the potential for biochemical conver...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1066-3

    authors: Adams JMM,Winters AL,Hodgson EM,Gallagher JA

    更新日期:2018-03-14 00:00:00

  • Structure-based directed evolution improves S. cerevisiae growth on xylose by influencing in vivo enzyme performance.

    abstract:Background:Efficient bioethanol production from hemicellulose feedstocks by Saccharomyces cerevisiae requires xylose utilization. Whereas S. cerevisiae does not metabolize xylose, engineered strains that express xylose isomerase can metabolize xylose by converting it to xylulose. For this, the type II xylose isomerase ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1643-0

    authors: Lee M,Rozeboom HJ,Keuning E,de Waal P,Janssen DB

    更新日期:2020-01-11 00:00:00

  • Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates.

    abstract:: A range of lignocellulosic feedstocks (including agricultural, softwood and hardwood substrates) were pretreated with either sulfur dioxide-catalyzed steam or an ethanol organosolv procedure to try to establish a reliable assessment of the factors governing the minimum protein loading that could be used to achieve ef...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-4-3

    authors: Arantes V,Saddler JN

    更新日期:2011-02-10 00:00:00

  • Retraction Note to: Engineering Bacillus licheniformis as a thermophilic platform for the production of l-lactic acid from lignocellulose-derived sugars.

    abstract::[This retracts the article DOI: 10.1186/s13068-017-0920-z.]. ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章,撤回出版物

    doi:10.1186/s13068-018-1086-z

    authors: Li C,Gai Z,Wang K,Jin L

    更新日期:2018-04-06 00:00:00

  • The primary transcriptome of the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973.

    abstract:Background:Cyanobacteria have shown promising potential for the production of various biofuels and chemical feedstocks. Synechococcus elongatus UTEX 2973 is a fast-growing strain with pronounced tolerance to high temperatures and illumination. Hence, this strain appears to be ideal for the development of photosynthetic...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1215-8

    authors: Tan X,Hou S,Song K,Georg J,Klähn S,Lu X,Hess WR

    更新日期:2018-08-04 00:00:00