Lignosulfonate-mediated cellulase adsorption: enhanced enzymatic saccharification of lignocellulose through weakening nonproductive binding to lignin.

Abstract:

BACKGROUND:Thermochemical pretreatment of lignocellulose is crucial to bioconversion in the fields of biorefinery and biofuels. However, the enzyme inhibitors in pretreatment hydrolysate make solid substrate washing and hydrolysate detoxification indispensable prior to enzymatic hydrolysis. Sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL) is a relatively new process, but has demonstrated robust performance for sugar and biofuel production from woody biomass in terms of yield and energy efficiency. This study demonstrated the advantage of SPORL pretreatment whereby the presentation of lignosulfonate (LS) renders the hydrolysate non-inhibitory to cellulase (Cel) due to the formation of lignosulfonate-cellulase complexes (LCCs) which can mediate the Cel adsorption between lignin and cellulose, contrary to the conventional belief that pretreatment hydrolysate inhibits the enzymatic hydrolysis unless detoxified. RESULTS:Particular emphasis was made on the formation mechanisms and stability phase of LCCs, the electrostatic interaction between LCCs and lignin, and the redistributed Cel adsorption between lignin and cellulose. The study found that LS, the byproduct of SPORL pretreatment, behaves as a polyelectrolyte to form LCCs with Cel by associating to the oppositely charged groups of protein. Compared to Cel, the zeta potential of LCCs is more negative and adjustable by altering the molar ratio of LS to Cel, and thereby LCCs have the ability to mitigate the nonproductive binding of Cel to lignin because of the enlarged electrostatic repulsion. Experimental results showed that the benefit from the reduced nonproductive binding outweighed the detrimental effects from the inhibitors in pretreatment hydrolysate. Specifically, the glucan conversions of solid substrate from poplar and lodgepole pine were greatly elevated by 25.9% and 31.8%, respectively, with the complete addition of the corresponding hydrolysate. This contradicts the well-acknowledged concept in the fields of biofuels and biorefinery that the pretreatment hydrolysate is inhibitory to enzymes. CONCLUSIONS:The results reported in this study also suggest significant advantages of SPORL pretreatment in terms of water consumption and process integration, that is, it should abolish the steps of solid substrate washing and pretreatment hydrolysate detoxification for direct simultaneous saccharification and combined fermentation (SSCombF) of enzymatic and pretreatment hydrolysate, thereby facilitating bioprocess consolidation. Furthermore, this study not only has practical significance to biorefinery and bioenergy, but it also provides scientific importance to the molecular design of composite enzyme-polyelectrolyte systems, such as immobilized enzymes and enzyme activators, as well as to the design of enzyme separation processes using water-soluble polyelectrolytes.

journal_name

Biotechnol Biofuels

authors

Wang Z,Zhu J,Fu Y,Qin M,Shao Z,Jiang J,Yang F

doi

10.1186/1754-6834-6-156

subject

Has Abstract

pub_date

2013-11-05 00:00:00

pages

156

issue

1

issn

1754-6834

pii

1754-6834-6-156

journal_volume

6

pub_type

杂志文章
  • Bioconversion of biodiesel refinery waste in the bioemulsifier by Trichosporon mycotoxinivorans CLA2.

    abstract:BACKGROUND:The microbial bioemulsifiers was surface active compounds, are more effective in stabilizing oil-in-water emulsions. The yeasts have been isolated to produce bioemulsifiers from vegetable oils and industrial wastes. RESULTS:Trichosporon mycotoxinivorans CLA2 is bioemulsifier-producing yeast strain isolated ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-5-29

    authors: de Souza Monteiro A,Domingues VS,Souza MV,Lula I,Gonçalves DB,de Siqueira EP,Dos Santos VL

    更新日期:2012-05-06 00:00:00

  • Xylan epitope profiling: an enhanced approach to study organ development-dependent changes in xylan structure, biosynthesis, and deposition in plant cell walls.

    abstract:Background:Xylan is a major hemicellulosic component in the cell walls of higher plants especially in the secondary walls of vascular cells which are playing important roles in physiological processes and overall mechanical strength. Being the second most abundant cell wall polymer after cellulose, xylan is an abundant...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0935-5

    authors: Peralta AG,Venkatachalam S,Stone SC,Pattathil S

    更新日期:2017-11-30 00:00:00

  • Transcriptional analysis of Clostridium beijerinckii NCIMB 8052 to elucidate role of furfural stress during acetone butanol ethanol fermentation.

    abstract:BACKGROUND:Furfural is the prevalent microbial inhibitor generated during pretreatment and hydrolysis of lignocellulose biomass to monomeric sugars, but the response of acetone butanol ethanol (ABE) producing Clostridium beijerinckii NCIMB 8052 to this compound at the molecular level is unknown. To discern the effect o...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-66

    authors: Zhang Y,Ezeji TC

    更新日期:2013-05-04 00:00:00

  • Organosolv pretreatment of sorghum bagasse using a low concentration of hydrophobic solvents such as 1-butanol or 1-pentanol.

    abstract:BACKGROUND:The primary components of lignocellulosic biomass such as sorghum bagasse are cellulose, hemicellulose, and lignin. Each component can be utilized as a sustainable resource for producing biofuels and bio-based products. However, due to their complicated structures, fractionation of lignocellulosic biomass co...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0427-z

    authors: Teramura H,Sasaki K,Oshima T,Matsuda F,Okamoto M,Shirai T,Kawaguchi H,Ogino C,Hirano K,Sazuka T,Kitano H,Kikuchi J,Kondo A

    更新日期:2016-02-02 00:00:00

  • Production of four Neurospora crassa lytic polysaccharide monooxygenases in Pichia pastoris monitored by a fluorimetric assay.

    abstract:UNLABELLED: BACKGROUND:Recent studies demonstrate that enzymes from the glycosyl hydrolase family 61 (GH61) show lytic polysaccharide monooxygenase (PMO) activity. Together with cellobiose dehydrogenase (CDH) an enzymatic system capable of oxidative cellulose cleavage is formed, which increases the efficiency of cellu...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-5-79

    authors: Kittl R,Kracher D,Burgstaller D,Haltrich D,Ludwig R

    更新日期:2012-10-26 00:00:00

  • Consolidated bioprocessing of Populus using Clostridium (Ruminiclostridium) thermocellum: a case study on the impact of lignin composition and structure.

    abstract:BACKGROUND:Higher ratios of syringyl-to-guaiacyl (S/G) lignin components of Populus were shown to improve sugar release by enzymatic hydrolysis using commercial blends. Cellulolytic microbes are often robust biomass hydrolyzers and may offer cost advantages; however, it is unknown whether their activity can also be sig...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0445-x

    authors: Dumitrache A,Akinosho H,Rodriguez M Jr,Meng X,Yoo CG,Natzke J,Engle NL,Sykes RW,Tschaplinski TJ,Muchero W,Ragauskas AJ,Davison BH,Brown SD

    更新日期:2016-02-04 00:00:00

  • Genomic comparison of Clostridium species with the potential of utilizing red algal biomass for biobutanol production.

    abstract:Background:Sustainable biofuels, which are widely considered as an attractive alternative to fossil fuels, can be generated by utilizing various biomass from the environment. Marine biomass, such as red algal biomass, is regarded as one potential renewable substrate source for biofuels conversion due to its abundance o...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1044-9

    authors: Sun C,Zhang S,Xin F,Shanmugam S,Wu YR

    更新日期:2018-02-15 00:00:00

  • Quantitative analysis of the effects of morphological changes on extracellular electron transfer rates in cyanobacteria.

    abstract:Background:Understanding the extracellular electron transport pathways in cyanobacteria is a major factor towards developing biophotovoltaics. Stressing cyanobacteria cells environmentally and then probing changes in physiology or metabolism following a significant change in electron transfer rates is a common approach...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-01788-8

    authors: Okedi TI,Fisher AC,Yunus K

    更新日期:2020-08-26 00:00:00

  • Use of substructure-specific carbohydrate binding modules to track changes in cellulose accessibility and surface morphology during the amorphogenesis step of enzymatic hydrolysis.

    abstract:BACKGROUND:Cellulose amorphogenesis, described as the non-hydrolytic "opening up" or disruption of a cellulosic substrate, is becoming increasingly recognized as one of the key steps in the enzymatic deconstruction of cellulosic biomass when used as a feedstock for fuels and chemicals production. Although this process ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-5-51

    authors: Gourlay K,Arantes V,Saddler JN

    更新日期:2012-07-24 00:00:00

  • Molecular and cellular mechanisms of neutral lipid accumulation in diatom following nitrogen deprivation.

    abstract:BACKGROUND:Nitrogen limitation can induce neutral lipid accumulation in microalgae, as well as inhibiting their growth. Therefore, to obtain cultures with both high biomass and high lipid contents, and explore the lipid accumulation mechanisms, we implemented nitrogen deprivation in a model diatom Phaeodactylum tricorn...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-67

    authors: Yang ZK,Niu YF,Ma YH,Xue J,Zhang MH,Yang WD,Liu JS,Lu SH,Guan Y,Li HY

    更新日期:2013-05-04 00:00:00

  • Peptide-mediated microalgae harvesting method for efficient biofuel production.

    abstract:BACKGROUND:Production of biofuels from microalgae has been recognized to be a promising route for a sustainable energy supply. However, the microalgae harvesting process is a bottleneck for industrialization because it is energy intensive. Thus, by displaying interactive protein factors on the cell wall, oleaginous mic...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0406-9

    authors: Maeda Y,Tateishi T,Niwa Y,Muto M,Yoshino T,Kisailus D,Tanaka T

    更新日期:2016-01-13 00:00:00

  • Peptide-based functional annotation of carbohydrate-active enzymes by conserved unique peptide patterns (CUPP).

    abstract:Background:Insight into the function of carbohydrate-active enzymes is required to understand their biological role and industrial potential. There is a need for better use of the ample genomic data in order to enable selection of the most interesting proteins for further studies. The basis for elaborating a new approa...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1436-5

    authors: Barrett K,Lange L

    更新日期:2019-04-30 00:00:00

  • Physiological roles of pyruvate ferredoxin oxidoreductase and pyruvate formate-lyase in Thermoanaerobacterium saccharolyticum JW/SL-YS485.

    abstract:BACKGROUND:Thermoanaerobacter saccharolyticum is a thermophilic microorganism that has been engineered to produce ethanol at high titer (30-70 g/L) and greater than 90 % theoretical yield. However, few genes involved in pyruvate to ethanol production pathway have been unambiguously identified. In T. saccharolyticum, th...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0304-1

    authors: Zhou J,Olson DG,Lanahan AA,Tian L,Murphy SJ,Lo J,Lynd LR

    更新日期:2015-09-15 00:00:00

  • Bioaugmentation of Lactobacillus delbrueckii ssp. bulgaricus TISTR 895 to enhance bio-hydrogen production of Rhodobacter sphaeroides KKU-PS5.

    abstract:BACKGROUND:Bioaugmentation or an addition of the desired microorganisms or specialized microbial strains into the anaerobic digesters can enhance the performance of microbial community in the hydrogen production process. Most of the studies focused on a bioaugmentation of native microorganisms capable of producing hydr...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0375-z

    authors: Laocharoen S,Reungsang A,Plangklang P

    更新日期:2015-11-25 00:00:00

  • Techno-economic and resource analysis of hydroprocessed renewable jet fuel.

    abstract:Background:Biomass-derived jet fuel is an alternative jet fuel (AJF) showing promise of reducing the dependence on fossil fuel and greenhouse gas emissions. Hydroprocessed esters and fatty acids (HEFA) concept is also known as one of the pathways for producing bio jet fuel. HEFA fuel was approved by the American Societ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0945-3

    authors: Tao L,Milbrandt A,Zhang Y,Wang WC

    更新日期:2017-11-09 00:00:00

  • Engineering Geobacillus thermoglucosidasius for direct utilisation of holocellulose from wheat straw.

    abstract:Background:A consolidated bioprocessing (CBP), where lignocellulose is converted into the desired product(s) in a single fermentative step without the addition of expensive degradative enzymes, represents the ideal solution of renewable routes to chemicals and fuels. Members of the genus Geobacillus are able to grow at...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1540-6

    authors: Bashir Z,Sheng L,Anil A,Lali A,Minton NP,Zhang Y

    更新日期:2019-08-20 00:00:00

  • Enhancing oil production in Arabidopsis through expression of a ketoacyl-ACP synthase domain of the PUFA synthase from Thraustochytrium.

    abstract:Background:Plant seed oil is an important bioresource for human food and animal feed, as well as industrial bioproducts. Therefore, increasing oil content in seeds has been one of the primary targets in the breeding programs of oilseed crops. Thraustochytrium is a marine protist that can produce a high level of very lo...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1514-8

    authors: Xie X,Meesapyodsuk D,Qiu X

    更新日期:2019-06-29 00:00:00

  • Multifunctional elastin-like polypeptide renders β-glucosidase enzyme phase transition and high stability.

    abstract:Background:In the enzymatic conversion of biomass, it becomes an important issue to efficiently and cost-effectively degrade cellulose into fermentable glucose. β-Glucosidase (Bgluc), an essential member of cellulases, plays a critical role in cellulosic biomass degradation. The difficulty in improving the stability of...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1497-5

    authors: Zhou Y,Li X,Yan D,Addai Peprah F,Ji X,Fletcher EE,Wang Y,Wang Y,Gu J,Lin F,Shi H

    更新日期:2019-06-24 00:00:00

  • Biodiesel and flavor compound production using a novel promiscuous cold-adapted SGNH-type lipase (HaSGNH1) from the psychrophilic bacterium Halocynthiibacter arcticus.

    abstract:Background:Biodiesel and flavor compound production using enzymatic transesterification by microbial lipases provides mild reaction conditions and low energy cost compared to the chemical process. SGNH-type lipases are very effective catalysts for enzymatic transesterification due to their high reaction rate, great sta...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-01696-x

    authors: Le LTHL,Yoo W,Jeon S,Lee C,Kim KK,Lee JH,Kim TD

    更新日期:2020-03-16 00:00:00

  • Pre-concentration of microalga Euglena gracilis by alkalescent pH treatment and flocculation mechanism of Ca3(PO4)2, Mg3(PO4)2, and derivatives.

    abstract:Background:Microalgae are widely be used in carbon sequestration, food supplements, natural pigments, polyunsaturated fatty acids, biofuel applications, and wastewater treatment. However, the difficulties incurred in algae cell separation and harvesting, and the exorbitant cost required to overcome these challenges, ar...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-01734-8

    authors: Wu M,Li J,Qin H,Lei A,Zhu H,Hu Z,Wang J

    更新日期:2020-05-29 00:00:00

  • Proteomic and metabolomic analysis of the cellular biomarkers related to inhibitors tolerance in Zymomonas mobilis ZM4.

    abstract:Background:Toxic compounds present in both the hydrolysate and pyrolysate of lignocellulosic biomass severely hinder the further conversion of lignocellulose-derived fermentable sugars into useful chemicals by common biocatalysts like Zymomonas mobilis, which has remarkable advantages over yeast. Although the extra det...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1287-5

    authors: Chang D,Yu Z,Ul Islam Z,French WT,Zhang Y,Zhang H

    更新日期:2018-10-16 00:00:00

  • Enzymatic synthesis of l-fucose from l-fuculose using a fucose isomerase from Raoultella sp. and the biochemical and structural analyses of the enzyme.

    abstract:Background:l-Fucose is a rare sugar with potential uses in the pharmaceutical, cosmetic, and food industries. The enzymatic approach using l-fucose isomerase, which interconverts l-fucose and l-fuculose, can be an efficient way of producing l-fucose for industrial applications. Here, we performed biochemical and struct...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1619-0

    authors: Kim IJ,Kim DH,Nam KH,Kim KH

    更新日期:2019-12-05 00:00:00

  • Metabolome analysis reveals a role for glyceraldehyde 3-phosphate dehydrogenase in the inhibition of C. thermocellum by ethanol.

    abstract:Background:Clostridium thermocellum is a promising microorganism for conversion of cellulosic biomass to biofuel, without added enzymes; however, the low ethanol titer produced by strains developed thus far is an obstacle to industrial application. Results:Here, we analyzed changes in the relative concentration of int...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0961-3

    authors: Tian L,Perot SJ,Stevenson D,Jacobson T,Lanahan AA,Amador-Noguez D,Olson DG,Lynd LR

    更新日期:2017-11-30 00:00:00

  • Assessment of drought tolerance of 49 switchgrass (Panicum virgatum) genotypes using physiological and morphological parameters.

    abstract:BACKGROUND:Switchgrass (Panicum virgatum L.) is a warm-season C4 grass that is a target lignocellulosic biofuel species. In many regions, drought stress is one of the major limiting factors for switchgrass growth. The objective of this study was to evaluate the drought tolerance of 49 switchgrass genotypes. The relativ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0342-8

    authors: Liu Y,Zhang X,Tran H,Shan L,Kim J,Childs K,Ervin EH,Frazier T,Zhao B

    更新日期:2015-09-22 00:00:00

  • Enhanced rates of enzymatic saccharification and catalytic synthesis of biofuel substrates in gelatinized cellulose generated by trifluoroacetic acid.

    abstract:Background:The crystallinity of cellulose is a principal factor limiting the efficient hydrolysis of biomass to fermentable sugars or direct catalytic conversion to biofuel components. We evaluated the impact of TFA-induced gelatinization of crystalline cellulose on enhancement of enzymatic digestion and catalytic conv...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0999-2

    authors: Shiga TM,Xiao W,Yang H,Zhang X,Olek AT,Donohoe BS,Liu J,Makowski L,Hou T,McCann MC,Carpita NC,Mosier NS

    更新日期:2017-12-27 00:00:00

  • Lipase immobilized on functionalized superparamagnetic few-layer graphene oxide as an efficient nanobiocatalyst for biodiesel production from Chlorella vulgaris bio-oil.

    abstract:Background:Microalgae, due to its well-recognized advantages have gained renewed interest as potentially good feedstock for biodiesel. Production of fatty acid methyl esters (FAMEs) as a type of biodiesel was carried out from Chlorella vulgaris bio-oil. Biodiesel was produced in the presence of nano-biocatalysts compos...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-01688-x

    authors: Nematian T,Shakeri A,Salehi Z,Saboury AA

    更新日期:2020-03-20 00:00:00

  • Bioflocculants' production in a biomass-degrading bacterium using untreated corn stover as carbon source and use of bioflocculants for microalgae harvest.

    abstract:Background:Bioflocculation has been developed as a cost-effective and environment-friendly method to harvest multiple microalgae. However, the high production cost of bioflocculants makes it difficult to scale up. In the current study, low-cost bioflocculants were produced from untreated corn stover by a biomass-degrad...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0987-6

    authors: Guo H,Hong C,Zheng B,Lu F,Jiang D,Qin W

    更新日期:2017-12-20 00:00:00

  • Seed-specific suppression of ADP-glucose pyrophosphorylase in Camelina sativa increases seed size and weight.

    abstract:Background:Camelina (Camelina sativa L.) is a promising oilseed crop that may provide sustainable feedstock for biofuel production. One of the major drawbacks of Camelina is its smaller seeds compared to other major oil crops such as canola, which limit oil yield and may also pose challenges in successful seedling esta...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1334-2

    authors: Na G,Aryal N,Fatihi A,Kang J,Lu C

    更新日期:2018-12-18 00:00:00

  • Kinetic modeling of countercurrent saccharification.

    abstract:Background:Countercurrent saccharification is a promising way to minimize enzyme loading while obtaining high conversions and product concentrations. However, in countercurrent saccharification experiments, 3-4 months are usually required to acquire a single steady-state data point. To save labor and time, simulation o...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1517-5

    authors: Liang C,Gu C,Karim MN,Holtzapple M

    更新日期:2019-07-11 00:00:00

  • Engineering a Streptomyces coelicolor biosynthesis pathway into Escherichia coli for high yield triglyceride production.

    abstract:BACKGROUND:Microbial lipid production represents a potential alternative feedstock for the biofuel and oleochemical industries. Since Escherichia coli exhibits many genetic, technical, and biotechnological advantages over native oleaginous bacteria, we aimed to construct a metabolically engineered E. coli strain capabl...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-014-0172-0

    authors: Comba S,Sabatini M,Menendez-Bravo S,Arabolaza A,Gramajo H

    更新日期:2014-12-24 00:00:00