Quantitative analysis of the effects of morphological changes on extracellular electron transfer rates in cyanobacteria.

Abstract:

Background:Understanding the extracellular electron transport pathways in cyanobacteria is a major factor towards developing biophotovoltaics. Stressing cyanobacteria cells environmentally and then probing changes in physiology or metabolism following a significant change in electron transfer rates is a common approach for investigating the electron path from cell to electrode. However, such studies have not explored how the cells' concurrent morphological adaptations to the applied stresses affect electron transfer rates. In this paper, we establish a ratio to quantify this effect in mediated systems and apply it to Synechococcus elongatus sp. PCC7942 cells grown under different nutritional regimes. Results:The results provide evidence that wider and longer cells with larger surface areas have faster mediated electron transfer rates. For rod-shaped cells, increase in cell area as a result of cell elongation more than compensates for the associated decline in mass transfer coefficients, resulting in faster electron transfer. In addition, the results demonstrate that the extent to which morphological adaptations account for the changes in electron transfer rates changes over the bacterial growth cycle, such that investigations probing physiological and metabolic changes are meaningful only at certain time periods. Conclusion:A simple ratio for quantitatively evaluating the effects of cell morphology adaptations on electron transfer rates has been defined. Furthermore, the study points to engineering cell shape, either via environmental conditioning or genetic engineering, as a potential strategy for improving the performance of biophotovoltaic devices.

journal_name

Biotechnol Biofuels

authors

Okedi TI,Fisher AC,Yunus K

doi

10.1186/s13068-020-01788-8

subject

Has Abstract

pub_date

2020-08-26 00:00:00

pages

150

issn

1754-6834

pii

1788

journal_volume

13

pub_type

杂志文章
  • Transparent polyvinyl-alcohol cryogel as immobilisation matrix for continuous biohydrogen production by phototrophic bacteria.

    abstract:Background:Phototrophic purple non-sulfur bacteria (PNSB) have gained attention for their ability to produce a valuable clean energy source in the form biohydrogen via photofermentation of a wide variety of organic wastes. For maturation of these phototrophic bioprocesses towards commercial feasibility, development of ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-01743-7

    authors: du Toit JP,Pott RWM

    更新日期:2020-06-09 00:00:00

  • Comparative secretome analysis of Trichoderma asperellum S4F8 and Trichoderma reesei Rut C30 during solid-state fermentation on sugarcane bagasse.

    abstract:BACKGROUND:The lignocellulosic enzymes of Trichoderma species have received particular attention with regard to biomass conversion to biofuels, but the production cost of these enzymes remains a significant hurdle for their commercial application. In this study, we quantitatively compared the lignocellulolytic enzyme p...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-172

    authors: Marx IJ,van Wyk N,Smit S,Jacobson D,Viljoen-Bloom M,Volschenk H

    更新日期:2013-11-29 00:00:00

  • Direct bioconversion of brown algae into ethanol by thermophilic bacterium Defluviitalea phaphyphila.

    abstract:BACKGROUND:Brown algae are promising feedstocks for biofuel production with inherent advantages of no structural lignin, high growth rate, and no competition for land and fresh water. However, it is difficult for one microorganism to convert all components of brown algae with different oxidoreduction potentials to etha...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0494-1

    authors: Ji SQ,Wang B,Lu M,Li FL

    更新日期:2016-04-01 00:00:00

  • Bioelectrochemical production of hydrogen in an innovative pressure-retarded osmosis/microbial electrolysis cell system: experiments and modeling.

    abstract:BACKGROUND:While microbial electrolysis cells (MECs) can simultaneously produce bioelectrochemical hydrogen and treat wastewater, they consume considerable energy to overcome the unfavorable thermodynamics, which is not sustainable and economically feasible in practical applications. This study presents a proof-of-conc...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0305-0

    authors: Yuan H,Lu Y,Abu-Reesh IM,He Z

    更新日期:2015-08-14 00:00:00

  • Disruption of the transcription factors Thi2p and Nrm1p alleviates the post-glucose effect on xylose utilization in Saccharomyces cerevisiae.

    abstract:Background:The recombinant Saccharomyces cerevisiae strains that acquired the ability to utilize xylose through metabolic and evolutionary engineering exhibit good performance when xylose is the sole carbon source in the medium (designated the X stage in the present work). However, the xylose consumption rate of strain...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1112-1

    authors: Wei S,Liu Y,Wu M,Ma T,Bai X,Hou J,Shen Y,Bao X

    更新日期:2018-04-16 00:00:00

  • Engineering xylose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production.

    abstract:BACKGROUND:There has been a great deal of interest in fuel productions from lignocellulosic biomass to minimize the conflict between food and fuel use. The bioconversion of xylose, which is the second most abundant sugar present after glucose in lignocellulosic biomass, is important for the development of cost effectiv...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-134

    authors: Kurosawa K,Wewetzer SJ,Sinskey AJ

    更新日期:2013-09-16 00:00:00

  • Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing.

    abstract:BACKGROUND:Renewable energy production is currently a major issue worldwide. Biogas is a promising renewable energy carrier as the technology of its production combines the elimination of organic waste with the formation of a versatile energy carrier, methane. In consequence of the complexity of the microbial communiti...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-5-41

    authors: Wirth R,Kovács E,Maróti G,Bagi Z,Rákhely G,Kovács KL

    更新日期:2012-07-12 00:00:00

  • Chemical and structural changes associated with Cu-catalyzed alkaline-oxidative delignification of hybrid poplar.

    abstract:BACKGROUND:Alkaline hydrogen peroxide pretreatment catalyzed by Cu(II) 2,2'-bipyridine complexes has previously been determined to substantially improve the enzymatic hydrolysis of woody plants including hybrid poplar as a consequence of moderate delignification. In the present work, cell wall morphological and lignin ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0300-5

    authors: Li Z,Bansal N,Azarpira A,Bhalla A,Chen CH,Ralph J,Hegg EL,Hodge DB

    更新日期:2015-08-20 00:00:00

  • Exploring xylose metabolism in Spathaspora species: XYL1.2 from Spathaspora passalidarum as the key for efficient anaerobic xylose fermentation in metabolic engineered Saccharomyces cerevisiae.

    abstract:BACKGROUND:The production of ethanol and other fuels and chemicals from lignocellulosic materials is dependent of efficient xylose conversion. Xylose fermentation capacity in yeasts is usually linked to xylose reductase (XR) accepting NADH as cofactor. The XR from Scheffersomyces stipitis, which is able to use NADH as ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0570-6

    authors: Cadete RM,de Las Heras AM,Sandström AG,Ferreira C,Gírio F,Gorwa-Grauslund MF,Rosa CA,Fonseca C

    更新日期:2016-08-05 00:00:00

  • Lavender- and lavandin-distilled straws: an untapped feedstock with great potential for the production of high-added value compounds and fungal enzymes.

    abstract:Background:Lavender (Lavandula angustifolia) and lavandin (a sterile hybrid of L. angustifolia × L. latifolia) essential oils are among those most commonly used in the world for various industrial purposes, including perfumes, pharmaceuticals and cosmetics. The solid residues from aromatic plant distillation such as la...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1218-5

    authors: Lesage-Meessen L,Bou M,Ginies C,Chevret D,Navarro D,Drula E,Bonnin E,Del Río JC,Odinot E,Bisotto A,Berrin JG,Sigoillot JC,Faulds CB,Lomascolo A

    更新日期:2018-08-02 00:00:00

  • Sugar loss and enzyme inhibition due to oligosaccharide accumulation during high solids-loading enzymatic hydrolysis.

    abstract:BACKGROUND:Accumulation of recalcitrant oligosaccharides during high-solids loading enzymatic hydrolysis of cellulosic biomass reduces biofuel yields and increases processing costs for a cellulosic biorefinery. Recalcitrant oligosaccharides in AFEX-pretreated corn stover hydrolysate accumulate to the extent of about 18...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0378-9

    authors: Xue S,Uppugundla N,Bowman MJ,Cavalier D,Da Costa Sousa L,E Dale B,Balan V

    更新日期:2015-11-26 00:00:00

  • One-step process of hydrothermal and alkaline treatment of wheat straw for improving the enzymatic saccharification.

    abstract:Background:To increase the production of bioethanol, a two-step process based on hydrothermal and dilute alkaline treatment was applied to reduce the natural resistance of biomass. However, the process required a large amount of water and a long operation time due to the solid/liquid separation before the alkaline trea...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1140-x

    authors: Sun S,Zhang L,Liu F,Fan X,Sun RC

    更新日期:2018-05-12 00:00:00

  • Pelagibaca bermudensis promotes biofuel competence of Tetraselmis striata in a broad range of abiotic stressors: dynamics of quorum-sensing precursors and strategic improvement in lipid productivity.

    abstract:Background:Amelioration of biofuel feedstock of microalgae using sustainable means through synthetic ecology is a promising strategy. The co-cultivation model (Tetraselmis striata and Pelagibaca bermudensis) was evaluated for the robust biofuel production under varying stressors as well as with the selected two-stage c...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1097-9

    authors: Patidar SK,Kim SH,Kim JH,Park J,Park BS,Han MS

    更新日期:2018-04-07 00:00:00

  • Improved lipid production via fatty acid biosynthesis and free fatty acid recycling in engineered Synechocystis sp. PCC 6803.

    abstract:Background:Cyanobacteria are potential sources for third generation biofuels. Their capacity for biofuel production has been widely improved using metabolically engineered strains. In this study, we employed metabolic engineering design with target genes involved in selected processes including the fatty acid synthesis...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1349-8

    authors: Eungrasamee K,Miao R,Incharoensakdi A,Lindblad P,Jantaro S

    更新日期:2019-01-04 00:00:00

  • Optimization of the dilute maleic acid pretreatment of wheat straw.

    abstract:BACKGROUND:In this study, the dilute maleic acid pretreatment of wheat straw is optimized, using pretreatment time, temperature and maleic acid concentration as design variables. A central composite design was applied to the experimental set up. The response factors used in this study are: (1) glucose benefits from imp...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-2-31

    authors: Kootstra AM,Beeftink HH,Scott EL,Sanders JP

    更新日期:2009-12-21 00:00:00

  • Evaluation of ammonia fibre expansion (AFEX) pretreatment for enzymatic hydrolysis of switchgrass harvested in different seasons and locations.

    abstract:BACKGROUND:When producing biofuels from dedicated feedstock, agronomic factors such as harvest time and location can impact the downstream production. Thus, this paper studies the effectiveness of ammonia fibre expansion (AFEX) pretreatment on two harvest times (July and October) and ecotypes/locations (Cave-in-Rock (C...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-3-1

    authors: Bals B,Rogers C,Jin M,Balan V,Dale B

    更新日期:2010-01-04 00:00:00

  • Assessment of drought tolerance of 49 switchgrass (Panicum virgatum) genotypes using physiological and morphological parameters.

    abstract:BACKGROUND:Switchgrass (Panicum virgatum L.) is a warm-season C4 grass that is a target lignocellulosic biofuel species. In many regions, drought stress is one of the major limiting factors for switchgrass growth. The objective of this study was to evaluate the drought tolerance of 49 switchgrass genotypes. The relativ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0342-8

    authors: Liu Y,Zhang X,Tran H,Shan L,Kim J,Childs K,Ervin EH,Frazier T,Zhao B

    更新日期:2015-09-22 00:00:00

  • Parallel metatranscriptome analyses of host and symbiont gene expression in the gut of the termite Reticulitermes flavipes.

    abstract:BACKGROUND:Termite lignocellulose digestion is achieved through a collaboration of host plus prokaryotic and eukaryotic symbionts. In the present work, we took a combined host and symbiont metatranscriptomic approach for investigating the digestive contributions of host and symbiont in the lower termite Reticulitermes ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-2-25

    authors: Tartar A,Wheeler MM,Zhou X,Coy MR,Boucias DG,Scharf ME

    更新日期:2009-10-15 00:00:00

  • From wheat straw to bioethanol: integrative analysis of a separate hydrolysis and co-fermentation process with implemented enzyme production.

    abstract:BACKGROUND:Lignocellulosic ethanol has a high potential as renewable energy source. In recent years, much research effort has been spent to optimize parameters involved in the production process. Despite that, there is still a lack of comprehensive studies on process integration. Single parameters and process configura...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0232-0

    authors: Novy V,Longus K,Nidetzky B

    更新日期:2015-03-18 00:00:00

  • Structure-based directed evolution improves S. cerevisiae growth on xylose by influencing in vivo enzyme performance.

    abstract:Background:Efficient bioethanol production from hemicellulose feedstocks by Saccharomyces cerevisiae requires xylose utilization. Whereas S. cerevisiae does not metabolize xylose, engineered strains that express xylose isomerase can metabolize xylose by converting it to xylulose. For this, the type II xylose isomerase ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1643-0

    authors: Lee M,Rozeboom HJ,Keuning E,de Waal P,Janssen DB

    更新日期:2020-01-11 00:00:00

  • Bioaugmentation of Lactobacillus delbrueckii ssp. bulgaricus TISTR 895 to enhance bio-hydrogen production of Rhodobacter sphaeroides KKU-PS5.

    abstract:BACKGROUND:Bioaugmentation or an addition of the desired microorganisms or specialized microbial strains into the anaerobic digesters can enhance the performance of microbial community in the hydrogen production process. Most of the studies focused on a bioaugmentation of native microorganisms capable of producing hydr...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0375-z

    authors: Laocharoen S,Reungsang A,Plangklang P

    更新日期:2015-11-25 00:00:00

  • Bacteriophage application restores ethanol fermentation characteristics disrupted by Lactobacillus fermentum.

    abstract:BACKGROUND:Contamination of corn mash by lactic acid bacteria (LAB) reduces the efficiency of the ethanol fermentation process. The industry relies heavily on antibiotics for contamination control and there is a need to develop alternative methods. The goals of this study were to determine the diversity and abundance o...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0325-9

    authors: Liu M,Bischoff KM,Gill JJ,Mire-Criscione MD,Berry JD,Young R,Summer EJ

    更新日期:2015-09-04 00:00:00

  • Co-production of acetoin and succinic acid by metabolically engineered Enterobacter cloacae.

    abstract:BACKGROUND:Renewable chemicals have attracted attention due to increasing interest in environmental concerns and resource utilization. Biobased production of industrial compounds from nonfood biomass has become increasingly important as a sustainable replacement for traditional petroleum-based production processes depe...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-021-01878-1

    authors: Su HY,Li HY,Xie CY,Fei Q,Cheng KK

    更新日期:2021-01-19 00:00:00

  • Freshwater microalgae harvested via flocculation induced by pH decrease.

    abstract:BACKGROUND:Recent studies have demonstrated that microalga has been widely regarded as one of the most promising raw materials of biofuels. However, lack of an economical, efficient and convenient method to harvest microalgae is a bottleneck to boost their full-scale application. Many methods of harvesting microalgae, ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-98

    authors: Liu J,Zhu Y,Tao Y,Zhang Y,Li A,Li T,Sang M,Zhang C

    更新日期:2013-07-09 00:00:00

  • Efficient molasses fermentation under high salinity by inocula of marine and terrestrial origin.

    abstract:BACKGROUND:Molasses is a dense and saline by-product of the sugar agroindustry. Its high organic content potentially fuels a myriad of renewable products of industrial interest. However, the biotechnological exploitation of molasses is mainly hampered by the high concentration of salts, an issue that is nowadays tackle...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0701-8

    authors: Scoma A,Coma M,Kerckhof FM,Boon N,Rabaey K

    更新日期:2017-01-31 00:00:00

  • Direct and up-close views of plant cell walls show a leading role for lignin-modifying enzymes on ensuing xylanases.

    abstract:BACKGROUND:A key barrier that limits the full potential of biological processes to create new, sustainable materials and fuels from plant fibre is limited enzyme accessibility to polysaccharides and lignin that characterize lignocellulose networks. Moreover, the heterogeneity of lignocellulosic substrates means that di...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-014-0176-9

    authors: Jeremic D,Goacher RE,Yan R,Karunakaran C,Master ER

    更新日期:2014-12-31 00:00:00

  • RCO-3 and COL-26 form an external-to-internal module that regulates the dual-affinity glucose transport system in Neurospora crassa.

    abstract:BACKGROUND:Low- and high-affinity glucose transport system is a conserved strategy of microorganism to cope with environmental glucose fluctuation for their growth and competitiveness. In Neurospora crassa, the dual-affinity glucose transport system consists of a low-affinity glucose transporter GLT-1 and two high-affi...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-021-01877-2

    authors: Li J,Liu Q,Li J,Lin L,Li X,Zhang Y,Tian C

    更新日期:2021-01-28 00:00:00

  • A complete annotation of the chromosomes of the cellulase producer Trichoderma reesei provides insights in gene clusters, their expression and reveals genes required for fitness.

    abstract:BACKGROUND:Investigations on a few eukaryotic model organisms showed that many genes are non-randomly distributed on chromosomes. In addition, chromosome ends frequently possess genes that are important for the fitness of the organisms. Trichoderma reesei is an industrial producer of enzymes for food, feed and biorefin...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0488-z

    authors: Druzhinina IS,Kopchinskiy AG,Kubicek EM,Kubicek CP

    更新日期:2016-03-29 00:00:00

  • Modular systems metabolic engineering enables balancing of relevant pathways for l-histidine production with Corynebacterium glutamicum.

    abstract:Background:l-Histidine biosynthesis is embedded in an intertwined metabolic network which renders microbial overproduction of this amino acid challenging. This is reflected in the few available examples of histidine producers in literature. Since knowledge about the metabolic interplay is limited, we systematically per...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1410-2

    authors: Schwentner A,Feith A,Münch E,Stiefelmaier J,Lauer I,Favilli L,Massner C,Öhrlein J,Grund B,Hüser A,Takors R,Blombach B

    更新日期:2019-03-25 00:00:00

  • Solid-state NMR of unlabeled plant cell walls: high-resolution structural analysis without isotopic enrichment.

    abstract:BACKGROUND:Multidimensional solid-state nuclear magnetic resonance (ssNMR) spectroscopy has emerged as an indispensable technique for resolving polymer structure and intermolecular packing in primary and secondary plant cell walls. Isotope (13C) enrichment provides feasible sensitivity for measuring 2D/3D correlation s...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-01858-x

    authors: Zhao W,Kirui A,Deligey F,Mentink-Vigier F,Zhou Y,Zhang B,Wang T

    更新日期:2021-01-07 00:00:00