Lavender- and lavandin-distilled straws: an untapped feedstock with great potential for the production of high-added value compounds and fungal enzymes.

Abstract:

Background:Lavender (Lavandula angustifolia) and lavandin (a sterile hybrid of L. angustifolia × L. latifolia) essential oils are among those most commonly used in the world for various industrial purposes, including perfumes, pharmaceuticals and cosmetics. The solid residues from aromatic plant distillation such as lavender- and lavandin-distilled straws are generally considered as wastes, and consequently either left in the fields or burnt. However, lavender- and lavandin-distilled straws are a potentially renewable plant biomass as they are cheap, non-food materials that can be used as raw feedstocks for green chemistry industry. The objective of this work was to assess different pathways of valorization of these straws as bio-based platform chemicals and fungal enzymes of interest in biorefinery. Results:Sugar and lignin composition analyses and saccharification potential of the straw fractions revealed that these industrial by-products could be suitable for second-generation bioethanol prospective. The solvent extraction processes, developed specifically for these straws, released terpene derivatives (e.g. τ-cadinol, β-caryophyllene), lactones (e.g. coumarin, herniarin) and phenolic compounds of industrial interest, including rosmarinic acid which contributed to the high antioxidant activity of the straw extracts. Lavender and lavandin straws were also suitable inducers for the secretion of a wide panel of lignocellulose-acting enzymes (cellulases, hemicellulases and oxido-reductases) from the white-rot model fungus Pycnoporus cinnabarinus. Interestingly, high amounts of laccase and several lytic polysaccharide monooxygenases were identified in the lavender and lavandin straw secretomes using proteomics. Conclusions:The present study demonstrated that the distilled straws of lavender and lavandin are lignocellulosic-rich materials that can be used as raw feedstocks for producing high-added value compounds (antioxidants, aroma) and fungal oxidative enzymes, which represent opportunities to improve the decomposition of recalcitrant lignocellulose into biofuel. Hence, the structure and the physico-chemical properties of these straws clearly open new perspectives for use in biotechnological processes involving especially filamentous fungi. These approaches represent sustainable strategies to foster the development of a local circular bioeconomy.

journal_name

Biotechnol Biofuels

authors

Lesage-Meessen L,Bou M,Ginies C,Chevret D,Navarro D,Drula E,Bonnin E,Del Río JC,Odinot E,Bisotto A,Berrin JG,Sigoillot JC,Faulds CB,Lomascolo A

doi

10.1186/s13068-018-1218-5

subject

Has Abstract

pub_date

2018-08-02 00:00:00

pages

217

issn

1754-6834

pii

1218

journal_volume

11

pub_type

杂志文章
  • Raw starch conversion by Saccharomyces cerevisiae expressing Aspergillus tubingensis amylases.

    abstract:BACKGROUND:Starch is one of the most abundant organic polysaccharides available for the production of bio-ethanol as an alternative transport fuel. Cost-effective utilisation of starch requires consolidated bioprocessing (CBP) where a single microorganism can produce the enzymes required for hydrolysis of starch, and a...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-167

    authors: Viktor MJ,Rose SH,van Zyl WH,Viljoen-Bloom M

    更新日期:2013-11-29 00:00:00

  • Methodology for enabling high-throughput simultaneous saccharification and fermentation screening of yeast using solid biomass as a substrate.

    abstract:BACKGROUND:High-throughput (HTP) screening is becoming an increasingly useful tool for collating biological data which would otherwise require the employment of excessive resources. Second generation biofuel production is one such process. HTP screening allows the investigation of large sample sets to be undertaken wit...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-014-0181-z

    authors: Elliston A,Wood IP,Soucouri MJ,Tantale RJ,Dicks J,Roberts IN,Waldron KW

    更新日期:2015-01-22 00:00:00

  • Stochastic techno-economic analysis of alcohol-to-jet fuel production.

    abstract:BACKGROUND:Alcohol-to-jet (ATJ) is one of the technical feasible biofuel technologies. It produces jet fuel from sugary, starchy, and lignocellulosic biomass, such as sugarcane, corn grain, and switchgrass, via fermentation of sugars to ethanol or other alcohols. This study assesses the ATJ biofuel production pathway f...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0702-7

    authors: Yao G,Staples MD,Malina R,Tyner WE

    更新日期:2017-01-19 00:00:00

  • Structure-based directed evolution improves S. cerevisiae growth on xylose by influencing in vivo enzyme performance.

    abstract:Background:Efficient bioethanol production from hemicellulose feedstocks by Saccharomyces cerevisiae requires xylose utilization. Whereas S. cerevisiae does not metabolize xylose, engineered strains that express xylose isomerase can metabolize xylose by converting it to xylulose. For this, the type II xylose isomerase ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1643-0

    authors: Lee M,Rozeboom HJ,Keuning E,de Waal P,Janssen DB

    更新日期:2020-01-11 00:00:00

  • Increased ethylene production by overexpressing phosphoenolpyruvate carboxylase in the cyanobacterium Synechocystis PCC 6803.

    abstract:Background:Cyanobacteria can be metabolically engineered to convert CO2 to fuels and chemicals such as ethylene. A major challenge in such efforts is to optimize carbon fixation and partition towards target molecules. Results:The efe gene encoding an ethylene-forming enzyme was introduced into a strain of the cyanobac...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-1653-y

    authors: Durall C,Lindberg P,Yu J,Lindblad P

    更新日期:2020-01-28 00:00:00

  • Ligninolytic peroxidase genes in the oyster mushroom genome: heterologous expression, molecular structure, catalytic and stability properties, and lignin-degrading ability.

    abstract:BACKGROUND:The genome of Pleurotus ostreatus, an important edible mushroom and a model ligninolytic organism of interest in lignocellulose biorefineries due to its ability to delignify agricultural wastes, was sequenced with the purpose of identifying and characterizing the enzymes responsible for lignin degradation. ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-7-2

    authors: Fernández-Fueyo E,Ruiz-Dueñas FJ,Martínez MJ,Romero A,Hammel KE,Medrano FJ,Martínez AT

    更新日期:2014-01-03 00:00:00

  • Bioprocessing of Stichococcus bacillaris strain siva2011.

    abstract:BACKGROUND:Globally, the development of a cost-effective long-term renewable energy infrastructure is one of the most challenging problems faced by society today. Microalgae are rich in potential biofuel substrates such as lipids, including triacylglycerols (TAGs). Some of these algae also biosynthesize small molecule ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-7-62

    authors: Sivakumar G,Jeong K,Lay JO Jr

    更新日期:2014-04-15 00:00:00

  • Facile isothermal solid acid catalyzed ionic liquid pretreatments to enhance the combined sugars production from Arundo donax Linn.

    abstract:BACKGROUND:Solid acid catalyzed inexpensive ionic liquid (IL) pretreatment is promising because of its effectiveness at decreasing biomass recalcitrance to subsequent enzymatic hydrolysis or in situ hydrolysis of carbohydrate oligomers. However, the conventional strategy was limited by the complex non-isothermal proces...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0589-8

    authors: You T,Shao L,Wang R,Zhang L,Xu F

    更新日期:2016-08-24 00:00:00

  • A complete annotation of the chromosomes of the cellulase producer Trichoderma reesei provides insights in gene clusters, their expression and reveals genes required for fitness.

    abstract:BACKGROUND:Investigations on a few eukaryotic model organisms showed that many genes are non-randomly distributed on chromosomes. In addition, chromosome ends frequently possess genes that are important for the fitness of the organisms. Trichoderma reesei is an industrial producer of enzymes for food, feed and biorefin...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0488-z

    authors: Druzhinina IS,Kopchinskiy AG,Kubicek EM,Kubicek CP

    更新日期:2016-03-29 00:00:00

  • Kinetic modeling of countercurrent saccharification.

    abstract:Background:Countercurrent saccharification is a promising way to minimize enzyme loading while obtaining high conversions and product concentrations. However, in countercurrent saccharification experiments, 3-4 months are usually required to acquire a single steady-state data point. To save labor and time, simulation o...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1517-5

    authors: Liang C,Gu C,Karim MN,Holtzapple M

    更新日期:2019-07-11 00:00:00

  • Combined resistance to oxidative stress and reduced antenna size enhance light-to-biomass conversion efficiency in Chlorella vulgaris cultures.

    abstract:Background:Microalgae are efficient producers of lipid-rich biomass, making them a key component in developing a sustainable energy source, and an alternative to fossil fuels. Chlorella species are of special interest because of their fast growth rate in photobioreactors. However, biological constraints still cast a si...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1566-9

    authors: Dall'Osto L,Cazzaniga S,Guardini Z,Barera S,Benedetti M,Mannino G,Maffei ME,Bassi R

    更新日期:2019-09-16 00:00:00

  • Development of optimal steam explosion pretreatment and highly effective cell factory for bioconversion of grain vinegar residue to butanol.

    abstract:Background:The industrial vinegar residue (VR) from solid-state fermentation, mainly cereals and their bran, will be a potential feedstock for future biofuels because of their low cost and easy availability. However, utilization of VR for butanol production has not been as much optimized as other sources of lignocellul...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-01751-7

    authors: Xia M,Peng M,Xue D,Cheng Y,Li C,Wang D,Lu K,Zheng Y,Xia T,Song J,Wang M

    更新日期:2020-06-24 00:00:00

  • Hydrolysis of untreated lignocellulosic feedstock is independent of S-lignin composition in newly classified anaerobic fungal isolate, Piromyces sp. UH3-1.

    abstract:Background:Plant biomass is an abundant but underused feedstock for bioenergy production due to its complex and variable composition, which resists breakdown into fermentable sugars. These feedstocks, however, are routinely degraded by many uncommercialized microbes such as anaerobic gut fungi. These gut fungi express ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1292-8

    authors: Hooker CA,Hillman ET,Overton JC,Ortiz-Velez A,Schacht M,Hunnicutt A,Mosier NS,Solomon KV

    更新日期:2018-10-27 00:00:00

  • Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains.

    abstract:BACKGROUND:Due to its capacity to produce large amounts of cellulases, Trichoderma reesei is increasingly been researched in various fields of white biotechnology, especially in biofuel production from lignocellulosic biomass. The commercial enzyme mixtures produced at industrial scales are not well characterized, and ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-1-18

    authors: Herpoël-Gimbert I,Margeot A,Dolla A,Jan G,Mollé D,Lignon S,Mathis H,Sigoillot JC,Monot F,Asther M

    更新日期:2008-12-23 00:00:00

  • Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions.

    abstract:BACKGROUND:Decomposition of biomass for biogas production can be practiced under wet and dry fermentation conditions. In contrast to the dry fermentation technology, wet fermentation is characterized by a high liquid content and a relatively low total solid content. In this study, the composition and functional potenti...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-014-0193-8

    authors: Stolze Y,Zakrzewski M,Maus I,Eikmeyer F,Jaenicke S,Rottmann N,Siebner C,Pühler A,Schlüter A

    更新日期:2015-02-08 00:00:00

  • Peptide-mediated microalgae harvesting method for efficient biofuel production.

    abstract:BACKGROUND:Production of biofuels from microalgae has been recognized to be a promising route for a sustainable energy supply. However, the microalgae harvesting process is a bottleneck for industrialization because it is energy intensive. Thus, by displaying interactive protein factors on the cell wall, oleaginous mic...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0406-9

    authors: Maeda Y,Tateishi T,Niwa Y,Muto M,Yoshino T,Kisailus D,Tanaka T

    更新日期:2016-01-13 00:00:00

  • Regional water footprints of potential biofuel production in China.

    abstract:BACKGROUND:Development of biofuels is considered as one of the important ways to replace conventional fossil energy and mitigate climate change. However, rapid increase of biofuel production could cause other environmental concerns in China such as water stress. This study is intended to evaluate the life-cycle water f...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0778-0

    authors: Xie X,Zhang T,Wang L,Huang Z

    更新日期:2017-04-18 00:00:00

  • Improving a recombinant Zymomonas mobilis strain 8b through continuous adaptation on dilute acid pretreated corn stover hydrolysate.

    abstract:BACKGROUND:Complete conversion of the major sugars of biomass including both the C5 and C6 sugars is critical for biofuel production processes. Several inhibitory compounds like acetate, hydroxymethylfurfural (HMF), and furfural are produced from the biomass pretreatment process leading to 'hydrolysate toxicity,' a maj...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0233-z

    authors: Mohagheghi A,Linger JG,Yang S,Smith H,Dowe N,Zhang M,Pienkos PT

    更新日期:2015-03-31 00:00:00

  • Methane-yielding microbial communities processing lactate-rich substrates: a piece of the anaerobic digestion puzzle.

    abstract:Background:Anaerobic digestion, whose final products are methane and carbon dioxide, ensures energy flow and circulation of matter in ecosystems. This naturally occurring process is used for the production of renewable energy from biomass. Lactate, a common product of acidic fermentation, is a key intermediate in anaer...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1106-z

    authors: Detman A,Mielecki D,Pleśniak Ł,Bucha M,Janiga M,Matyasik I,Chojnacka A,Jędrysek MO,Błaszczyk MK,Sikora A

    更新日期:2018-04-21 00:00:00

  • High concentrations of dried sorghum stalks as a biomass feedstock for single cell oil production by Rhodosporidium toruloides.

    abstract:BACKGROUND:Environmental crisis and concerns for energy security have made the research for renewable fuels that will substitute the usage of fossil fuels an important priority. Biodiesel is a potential substitute for petroleum, but its feasibility is hindered by the utilization of edible vegetable oil as raw material,...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-014-0190-y

    authors: Matsakas L,Bonturi N,Miranda EA,Rova U,Christakopoulos P

    更新日期:2015-01-22 00:00:00

  • Evaluation of native microalgae from Tunisia using the pulse-amplitude-modulation measurement of chlorophyll fluorescence and a performance study in semi-continuous mode for biofuel production.

    abstract:Background:Microalgae are attracting much attention as a promising feedstock for renewable energy production, while simultaneously providing environmental benefits. So far, comparison studies for microalgae selection for this purpose were mainly based on data obtained from batch cultures, where the lipid content and th...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1461-4

    authors: Jebali A,Acién FG,Jiménez-Ruiz N,Gómez C,Fernández-Sevilla JM,Mhiri N,Karray F,Sayadi S,Molina-Grima E

    更新日期:2019-05-11 00:00:00

  • Proteomic and metabolomic analysis of the cellular biomarkers related to inhibitors tolerance in Zymomonas mobilis ZM4.

    abstract:Background:Toxic compounds present in both the hydrolysate and pyrolysate of lignocellulosic biomass severely hinder the further conversion of lignocellulose-derived fermentable sugars into useful chemicals by common biocatalysts like Zymomonas mobilis, which has remarkable advantages over yeast. Although the extra det...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1287-5

    authors: Chang D,Yu Z,Ul Islam Z,French WT,Zhang Y,Zhang H

    更新日期:2018-10-16 00:00:00

  • From grass to gas: microbiome dynamics of grass biomass acidification under mesophilic and thermophilic temperatures.

    abstract:BACKGROUND:Separating acidification and methanogenic steps in anaerobic digestion processes can help to optimize the process and contribute to producing valuable sub-products such as methane, hydrogen and organic acids. However, the full potential of this technology has not been fully explored yet. To assess the underl...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0859-0

    authors: Abendroth C,Simeonov C,Peretó J,Antúnez O,Gavidia R,Luschnig O,Porcar M

    更新日期:2017-07-03 00:00:00

  • Improving pentose fermentation by preventing ubiquitination of hexose transporters in Saccharomyces cerevisiae.

    abstract:BACKGROUND:Engineering of the yeast Saccharomyces cerevisiae for improved utilization of pentose sugars is vital for cost-efficient cellulosic bioethanol production. Although endogenous hexose transporters (Hxt) can be engineered into specific pentose transporters, they remain subjected to glucose-regulated protein deg...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0573-3

    authors: Nijland JG,Vos E,Shin HY,de Waal PP,Klaassen P,Driessen AJ

    更新日期:2016-07-26 00:00:00

  • Consolidated bioprocessing of Populus using Clostridium (Ruminiclostridium) thermocellum: a case study on the impact of lignin composition and structure.

    abstract:BACKGROUND:Higher ratios of syringyl-to-guaiacyl (S/G) lignin components of Populus were shown to improve sugar release by enzymatic hydrolysis using commercial blends. Cellulolytic microbes are often robust biomass hydrolyzers and may offer cost advantages; however, it is unknown whether their activity can also be sig...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0445-x

    authors: Dumitrache A,Akinosho H,Rodriguez M Jr,Meng X,Yoo CG,Natzke J,Engle NL,Sykes RW,Tschaplinski TJ,Muchero W,Ragauskas AJ,Davison BH,Brown SD

    更新日期:2016-02-04 00:00:00

  • Improved simultaneous co-fermentation of glucose and xylose by Saccharomyces cerevisiae for efficient lignocellulosic biorefinery.

    abstract:Background:Lignocellulosic biorefinery offers economical and sustainable production of fuels and chemicals. Saccharomyces cerevisiae, a promising industrial host for biorefinery, has been intensively developed to expand its product profile. However, the sequential and slow conversion of xylose into target products rema...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1641-2

    authors: Hoang Nguyen Tran P,Ko JK,Gong G,Um Y,Lee SM

    更新日期:2020-01-22 00:00:00

  • Improvement of catalytic performance of lignin peroxidase for the enhanced degradation of lignocellulose biomass based on the imbedded electron-relay in long-range electron transfer route.

    abstract:BACKGROUND:Although lignin peroxidase is claimed as a key enzyme in enzyme-catalyzed lignin degradation, in vitro enzymatic degradation of lignin was not easily observed in lab-scale experiments. It implies that other factors may hinder the enzymatic degradation of lignin. Irreversible interaction between phenolic comp...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0664-1

    authors: Pham LT,Kim SJ,Kim YH

    更新日期:2016-11-15 00:00:00

  • The influence of feedstock characteristics on enzyme production in Trichoderma reesei: a review on productivity, gene regulation and secretion profiles.

    abstract::Biorefineries, designed for the production of lignocellulose-based chemicals and fuels, are receiving increasing attention from the public, governments, and industries. A major obstacle for biorefineries to advance to commercial scale is the high cost of the enzymes required to derive the fermentable sugars from the f...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章,评审

    doi:10.1186/s13068-019-1571-z

    authors: Novy V,Nielsen F,Seiboth B,Nidetzky B

    更新日期:2019-10-08 00:00:00

  • Cofactor engineering through heterologous expression of an NADH oxidase and its impact on metabolic flux redistribution in Klebsiella pneumoniae.

    abstract:UNLABELLED: BACKGROUND:Acetoin is an important bio-based platform chemical. However, it is usually existed as a minor byproduct of 2,3-butanediol fermentation in bacteria. RESULTS:The present study reports introducing an exogenous NAD+ regeneration sysytem into a 2,3-butanediol producing strain Klebsiella pneumoniae ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-7

    authors: Ji XJ,Xia ZF,Fu NH,Nie ZK,Shen MQ,Tian QQ,Huang H

    更新日期:2013-01-25 00:00:00

  • Deciphering lignocellulose deconstruction by the white rot fungus Irpex lacteus based on genomic and transcriptomic analyses.

    abstract:Background:Irpex lacteus is one of the most potent white rot fungi for biological pretreatment of lignocellulose for second biofuel production. To elucidate the underlying molecular mechanism involved in lignocellulose deconstruction, genomic and transcriptomic analyses were carried out for I. lacteus CD2 grown in subm...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1060-9

    authors: Qin X,Su X,Luo H,Ma R,Yao B,Ma F

    更新日期:2018-03-02 00:00:00