Regional water footprints of potential biofuel production in China.

Abstract:

BACKGROUND:Development of biofuels is considered as one of the important ways to replace conventional fossil energy and mitigate climate change. However, rapid increase of biofuel production could cause other environmental concerns in China such as water stress. This study is intended to evaluate the life-cycle water footprints (WF) of biofuels derived from several potential non-edible feedstocks including cassava, sweet sorghum, and Jatropha curcas in China. Different water footprint types including blue water, green water, and grey water are considered in this study. Based on the estimated WF, water deprivation impact and water stress degree on local water environment are further analyzed for different regions in China. RESULTS:On the basis of the feedstock resource availability, sweet sorghum, cassava, and Jatropha curcas seeds are considered as the likely feedstocks for biofuel production in China. The water footprint results show that the feedstock growth is the most water footprint intensive process, while the biofuel conversion and transportation contribute little to total water footprints. Water footprints vary significantly by region with climate and soil variations. The life-cycle water footprints of cassava ethanol, sweet sorghum ethanol, and Jatropha curcas seeds biodiesel were estimated to be 73.9-222.2, 115.9-210.4, and 64.7-182.3 L of water per MJ of biofuel, respectively. Grey water footprint dominates the life-cycle water footprint for each type of the biofuels. Development of biofuels without careful water resource management will exert significant impacts on local water resources. The water resource impacts vary significantly among regions. For example, based on blue and grey water consumption, Gansu province in China will suffer much higher water stress than other regions do due to limited available water resources and large amount of fertilizer use in that province. In term of blue water, Shandong province is shown with the most severe water stress issue, followed by Gansu province, which is attributed to the limited water resources in both provinces. CONCLUSIONS:By considering feedstock resource distribution, biofuel production potentials, and estimated water footprints, this study provides insight into the impact of biofuel production on the local water environment in China. Biofuel development policies need to be carefully designed for the sustainable development of biofuels in China.

journal_name

Biotechnol Biofuels

authors

Xie X,Zhang T,Wang L,Huang Z

doi

10.1186/s13068-017-0778-0

subject

Has Abstract

pub_date

2017-04-18 00:00:00

pages

95

issn

1754-6834

pii

778

journal_volume

10

pub_type

杂志文章
  • Pre-concentration of microalga Euglena gracilis by alkalescent pH treatment and flocculation mechanism of Ca3(PO4)2, Mg3(PO4)2, and derivatives.

    abstract:Background:Microalgae are widely be used in carbon sequestration, food supplements, natural pigments, polyunsaturated fatty acids, biofuel applications, and wastewater treatment. However, the difficulties incurred in algae cell separation and harvesting, and the exorbitant cost required to overcome these challenges, ar...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-01734-8

    authors: Wu M,Li J,Qin H,Lei A,Zhu H,Hu Z,Wang J

    更新日期:2020-05-29 00:00:00

  • Co-production of acetoin and succinic acid by metabolically engineered Enterobacter cloacae.

    abstract:BACKGROUND:Renewable chemicals have attracted attention due to increasing interest in environmental concerns and resource utilization. Biobased production of industrial compounds from nonfood biomass has become increasingly important as a sustainable replacement for traditional petroleum-based production processes depe...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-021-01878-1

    authors: Su HY,Li HY,Xie CY,Fei Q,Cheng KK

    更新日期:2021-01-19 00:00:00

  • Conversion of biomass-derived oligosaccharides into lipids.

    abstract:BACKGROUND:Oligocelluloses and oligoxyloses are partially hydrolyzed products from lignocellulosic biomass hydrolysis. Biomass hydrolysates usually contain monosaccharides as well as various amounts of oligosaccharides. To utilize biomass hydrolysates more efficiently, it is important to identify microorganisms capable...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-7-13

    authors: Gong Z,Wang Q,Shen H,Wang L,Xie H,Zhao ZK

    更新日期:2014-01-28 00:00:00

  • Improving L-arabinose utilization of pentose fermenting Saccharomyces cerevisiae cells by heterologous expression of L-arabinose transporting sugar transporters.

    abstract:BACKGROUND:Hydrolysates of plant biomass used for the production of lignocellulosic biofuels typically contain sugar mixtures consisting mainly of D-glucose and D-xylose, and minor amounts of L-arabinose. The yeast Saccharomyces cerevisiae is the preferred microorganism for the fermentative production of ethanol but is...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-4-38

    authors: Subtil T,Boles E

    更新日期:2011-10-12 00:00:00

  • Lytic polysaccharide monooxygenases and other oxidative enzymes are abundantly secreted by Aspergillus nidulans grown on different starches.

    abstract:BACKGROUND:Starch is the second most abundant plant-derived biomass and a major feedstock in non-food industrial applications and first generation biofuel production. In contrast to lignocellulose, detailed insight into fungal degradation of starch is currently lacking. This study explores the secretomes of Aspergillus...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0604-0

    authors: Nekiunaite L,Arntzen MØ,Svensson B,Vaaje-Kolstad G,Abou Hachem M

    更新日期:2016-09-01 00:00:00

  • A bionic system with Fenton reaction and bacteria as a model for bioprocessing lignocellulosic biomass.

    abstract:Background:The recalcitrance of lignocellulosic biomass offers a series of challenges for biochemical processing into biofuels and bio-products. For the first time, we address these challenges with a biomimetic system via a mild yet rapid Fenton reaction and lignocellulose-degrading bacterial strain Cupriavidus basilen...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1035-x

    authors: Zhang K,Si M,Liu D,Zhuo S,Liu M,Liu H,Yan X,Shi Y

    更新日期:2018-02-08 00:00:00

  • Increased drought tolerance in plants engineered for low lignin and low xylan content.

    abstract:Background:We previously developed several strategies to engineer plants to produce cost-efficient biofuels from plant biomass. Engineered Arabidopsis plants with low xylan and lignin content showed normal growth and improved saccharification efficiency under standard growth conditions. However, it remains to be determ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1196-7

    authors: Yan J,Aznar A,Chalvin C,Birdseye DS,Baidoo EEK,Eudes A,Shih PM,Loqué D,Zhang A,Scheller HV

    更新日期:2018-07-18 00:00:00

  • The primary transcriptome of the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973.

    abstract:Background:Cyanobacteria have shown promising potential for the production of various biofuels and chemical feedstocks. Synechococcus elongatus UTEX 2973 is a fast-growing strain with pronounced tolerance to high temperatures and illumination. Hence, this strain appears to be ideal for the development of photosynthetic...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1215-8

    authors: Tan X,Hou S,Song K,Georg J,Klähn S,Lu X,Hess WR

    更新日期:2018-08-04 00:00:00

  • Methane-yielding microbial communities processing lactate-rich substrates: a piece of the anaerobic digestion puzzle.

    abstract:Background:Anaerobic digestion, whose final products are methane and carbon dioxide, ensures energy flow and circulation of matter in ecosystems. This naturally occurring process is used for the production of renewable energy from biomass. Lactate, a common product of acidic fermentation, is a key intermediate in anaer...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1106-z

    authors: Detman A,Mielecki D,Pleśniak Ł,Bucha M,Janiga M,Matyasik I,Chojnacka A,Jędrysek MO,Błaszczyk MK,Sikora A

    更新日期:2018-04-21 00:00:00

  • Evaluation of ammonia fibre expansion (AFEX) pretreatment for enzymatic hydrolysis of switchgrass harvested in different seasons and locations.

    abstract:BACKGROUND:When producing biofuels from dedicated feedstock, agronomic factors such as harvest time and location can impact the downstream production. Thus, this paper studies the effectiveness of ammonia fibre expansion (AFEX) pretreatment on two harvest times (July and October) and ecotypes/locations (Cave-in-Rock (C...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-3-1

    authors: Bals B,Rogers C,Jin M,Balan V,Dale B

    更新日期:2010-01-04 00:00:00

  • Metabolic engineering of Yarrowia lipolytica for thermoresistance and enhanced erythritol productivity.

    abstract:Background:Functional sugar alcohols have been widely used in the food, medicine, and pharmaceutical industries for their unique properties. Among these, erythritol is a zero calories sweetener produced by the yeast Yarrowia lipolytica. However, in wild-type strains, erythritol is produced with low productivity and yie...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-01815-8

    authors: Wang N,Chi P,Zou Y,Xu Y,Xu S,Bilal M,Fickers P,Cheng H

    更新日期:2020-10-20 00:00:00

  • Crystal structure and biochemical characterization of the recombinant ThBgl, a GH1 β-glucosidase overexpressed in Trichoderma harzianum under biomass degradation conditions.

    abstract:BACKGROUND:The conversion of biomass-derived sugars via enzymatic hydrolysis for biofuel production is a challenge. Therefore, the search for microorganisms and key enzymes that increase the efficiency of the saccharification of cellulosic substrates remains an important and high-priority area of study. Trichoderma har...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0487-0

    authors: Santos CA,Zanphorlin LM,Crucello A,Tonoli CCC,Ruller R,Horta MAC,Murakami MT,de Souza AP

    更新日期:2016-03-22 00:00:00

  • Differential β-glucosidase expression as a function of carbon source availability in Talaromyces amestolkiae: a genomic and proteomic approach.

    abstract:BACKGROUND:Genomic and proteomic analysis are potent tools for metabolic characterization of microorganisms. Although cellulose usually triggers cellulase production in cellulolytic fungi, the secretion of the different enzymes involved in polymer conversion is subjected to different factors, depending on growth condit...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0844-7

    authors: de Eugenio LI,Méndez-Líter JA,Nieto-Domínguez M,Alonso L,Gil-Muñoz J,Barriuso J,Prieto A,Martínez MJ

    更新日期:2017-06-23 00:00:00

  • Real-time understanding of lignocellulosic bioethanol fermentation by Raman spectroscopy.

    abstract:BACKGROUND:A substantial barrier to commercialization of lignocellulosic ethanol production is a lack of process specific sensors and associated control strategies that are essential for economic viability. Current sensors and analytical techniques require lengthy offline analysis or are easily fouled in situ. Raman sp...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-28

    authors: Ewanick SM,Thompson WJ,Marquardt BJ,Bura R

    更新日期:2013-02-20 00:00:00

  • Combinatory strategy for characterizing and understanding the ethanol synthesis pathway in cyanobacteria cell factories.

    abstract:BACKGROUND:Photosynthetic production of chemicals and fuels by recycling CO2 in cyanobacteria is a promising solution facing energy shortage and resource declination. Ethanol is an attractive and demonstrative biofuel product, and ethanol synthesis in cyanobacteria has been achieved by assembling of a pathway consistin...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0367-z

    authors: Luan G,Qi Y,Wang M,Li Z,Duan Y,Tan X,Lu X

    更新日期:2015-11-21 00:00:00

  • Transcriptomic response to prolonged ethanol production in the cyanobacterium Synechocystis sp. PCC6803.

    abstract:BACKGROUND:The production of biofuels in photosynthetic microalgae and cyanobacteria is a promising alternative to the generation of fuels from fossil resources. To be economically competitive, producer strains need to be established that synthesize the targeted product at high yield and over a long time. Engineering c...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-7-21

    authors: Dienst D,Georg J,Abts T,Jakorew L,Kuchmina E,Börner T,Wilde A,Dühring U,Enke H,Hess WR

    更新日期:2014-02-06 00:00:00

  • T-6b allocates more assimilation product for oil synthesis and less for polysaccharide synthesis during the seed development of Arabidopsis thaliana.

    abstract:BACKGROUND:As an Agrobacterium tumefaciens T-DNA oncogene, T-6b induces the development of tumors and the enation syndrome in vegetative tissues of transgenic plants. Most of these effects are related to increases in soluble sugar contents. To verify the potential roles of T-6b in the distribution of carbon in developi...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0706-3

    authors: Jin Y,Hu J,Liu X,Ruan Y,Sun C,Liu C

    更新日期:2017-01-21 00:00:00

  • Alteration of leaf shape, improved metal tolerance, and productivity of seed by overexpression of CsHMA3 in Camelina sativa.

    abstract:BACKGROUND:Camelina sativa (L.) Crantz, known by such popular names as "gold-of-pleasure" and "false flax," is an alternative oilseed crop for biofuel production and can be grown in harsh environments. Considerable interest is now being given to the new concept of the development of a fusion plant which can be used as ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-7-96

    authors: Park W,Feng Y,Ahn SJ

    更新日期:2014-06-22 00:00:00

  • Overexpression of flv3 improves photosynthesis in the cyanobacterium Synechocystis sp. PCC6803 by enhancement of alternative electron flow.

    abstract:BACKGROUND:To ensure reliable sources of energy and raw materials, the utilization of sustainable biomass has considerable advantages over petroleum-based energy sources. Photosynthetic algae have attracted attention as a third-generation feedstock for biofuel production, because algae cultivation does not directly com...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-014-0183-x

    authors: Hasunuma T,Matsuda M,Senga Y,Aikawa S,Toyoshima M,Shimakawa G,Miyake C,Kondo A

    更新日期:2014-12-31 00:00:00

  • Comparative secretome analysis of Trichoderma asperellum S4F8 and Trichoderma reesei Rut C30 during solid-state fermentation on sugarcane bagasse.

    abstract:BACKGROUND:The lignocellulosic enzymes of Trichoderma species have received particular attention with regard to biomass conversion to biofuels, but the production cost of these enzymes remains a significant hurdle for their commercial application. In this study, we quantitatively compared the lignocellulolytic enzyme p...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-172

    authors: Marx IJ,van Wyk N,Smit S,Jacobson D,Viljoen-Bloom M,Volschenk H

    更新日期:2013-11-29 00:00:00

  • Selecting β-glucosidases to support cellulases in cellulose saccharification.

    abstract:BACKGROUND:Enzyme end-product inhibition is a major challenge in the hydrolysis of lignocellulose at a high dry matter consistency. β-glucosidases (BGs) hydrolyze cellobiose into two molecules of glucose, thereby relieving the product inhibition of cellobiohydrolases (CBHs). However, BG inhibition by glucose will event...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-105

    authors: Teugjas H,Väljamäe P

    更新日期:2013-07-24 00:00:00

  • Improvement of catalytic performance of lignin peroxidase for the enhanced degradation of lignocellulose biomass based on the imbedded electron-relay in long-range electron transfer route.

    abstract:BACKGROUND:Although lignin peroxidase is claimed as a key enzyme in enzyme-catalyzed lignin degradation, in vitro enzymatic degradation of lignin was not easily observed in lab-scale experiments. It implies that other factors may hinder the enzymatic degradation of lignin. Irreversible interaction between phenolic comp...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0664-1

    authors: Pham LT,Kim SJ,Kim YH

    更新日期:2016-11-15 00:00:00

  • Modular systems metabolic engineering enables balancing of relevant pathways for l-histidine production with Corynebacterium glutamicum.

    abstract:Background:l-Histidine biosynthesis is embedded in an intertwined metabolic network which renders microbial overproduction of this amino acid challenging. This is reflected in the few available examples of histidine producers in literature. Since knowledge about the metabolic interplay is limited, we systematically per...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1410-2

    authors: Schwentner A,Feith A,Münch E,Stiefelmaier J,Lauer I,Favilli L,Massner C,Öhrlein J,Grund B,Hüser A,Takors R,Blombach B

    更新日期:2019-03-25 00:00:00

  • RCO-3 and COL-26 form an external-to-internal module that regulates the dual-affinity glucose transport system in Neurospora crassa.

    abstract:BACKGROUND:Low- and high-affinity glucose transport system is a conserved strategy of microorganism to cope with environmental glucose fluctuation for their growth and competitiveness. In Neurospora crassa, the dual-affinity glucose transport system consists of a low-affinity glucose transporter GLT-1 and two high-affi...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-021-01877-2

    authors: Li J,Liu Q,Li J,Lin L,Li X,Zhang Y,Tian C

    更新日期:2021-01-28 00:00:00

  • Multifunctional elastin-like polypeptide renders β-glucosidase enzyme phase transition and high stability.

    abstract:Background:In the enzymatic conversion of biomass, it becomes an important issue to efficiently and cost-effectively degrade cellulose into fermentable glucose. β-Glucosidase (Bgluc), an essential member of cellulases, plays a critical role in cellulosic biomass degradation. The difficulty in improving the stability of...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1497-5

    authors: Zhou Y,Li X,Yan D,Addai Peprah F,Ji X,Fletcher EE,Wang Y,Wang Y,Gu J,Lin F,Shi H

    更新日期:2019-06-24 00:00:00

  • Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions.

    abstract:BACKGROUND:Decomposition of biomass for biogas production can be practiced under wet and dry fermentation conditions. In contrast to the dry fermentation technology, wet fermentation is characterized by a high liquid content and a relatively low total solid content. In this study, the composition and functional potenti...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-014-0193-8

    authors: Stolze Y,Zakrzewski M,Maus I,Eikmeyer F,Jaenicke S,Rottmann N,Siebner C,Pühler A,Schlüter A

    更新日期:2015-02-08 00:00:00

  • Improving the enzymatic hydrolysis of thermo-mechanical fiber from Eucalyptus urophylla by a combination of hydrothermal pretreatment and alkali fractionation.

    abstract:BACKGROUND:The recalcitrance of lignocellulosic biomass is a major limitation for its conversion into biofuels by enzymatic hydrolysis. The use of a pretreatment technology is an essential step to diminish biomass recalcitrance for bioethanol production. In this study, a two-step pretreatment using hydrothermal pretrea...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-014-0116-8

    authors: Sun S,Cao X,Sun S,Xu F,Song X,Sun RC,Jones GL

    更新日期:2014-08-20 00:00:00

  • Butanol production from laccase-pretreated brewer's spent grain.

    abstract:Background:Beer is the most popular alcoholic beverage worldwide. In the manufacture of beer, various by-products and residues are generated, and the most abundant (85% of total by-products) are spent grains. Thanks to its high (hemi)cellulose content (about 50% w/w dry weight), this secondary raw material is attractiv...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1383-1

    authors: Giacobbe S,Piscitelli A,Raganati F,Lettera V,Sannia G,Marzocchella A,Pezzella C

    更新日期:2019-03-05 00:00:00

  • Propionic acid production from corn stover hydrolysate by Propionibacterium acidipropionici.

    abstract:BACKGROUND:The production of value-added chemicals alongside biofuels from lignocellulosic hydrolysates is critical for developing economically viable biorefineries. Here, the production of propionic acid (PA), a potential building block for C3-based chemicals, from corn stover hydrolysate is investigated using the nat...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0884-z

    authors: Wang X,Salvachúa D,Sànchez I Nogué V,Michener WE,Bratis AD,Dorgan JR,Beckham GT

    更新日期:2017-08-17 00:00:00

  • Quantitative analysis of the effects of morphological changes on extracellular electron transfer rates in cyanobacteria.

    abstract:Background:Understanding the extracellular electron transport pathways in cyanobacteria is a major factor towards developing biophotovoltaics. Stressing cyanobacteria cells environmentally and then probing changes in physiology or metabolism following a significant change in electron transfer rates is a common approach...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-01788-8

    authors: Okedi TI,Fisher AC,Yunus K

    更新日期:2020-08-26 00:00:00