Ligninolytic peroxidase genes in the oyster mushroom genome: heterologous expression, molecular structure, catalytic and stability properties, and lignin-degrading ability.

Abstract:

BACKGROUND:The genome of Pleurotus ostreatus, an important edible mushroom and a model ligninolytic organism of interest in lignocellulose biorefineries due to its ability to delignify agricultural wastes, was sequenced with the purpose of identifying and characterizing the enzymes responsible for lignin degradation. RESULTS:Heterologous expression of the class II peroxidase genes, followed by kinetic studies, enabled their functional classification. The resulting inventory revealed the absence of lignin peroxidases (LiPs) and the presence of three versatile peroxidases (VPs) and six manganese peroxidases (MnPs), the crystal structures of two of them (VP1 and MnP4) were solved at 1.0 to 1.1 Å showing significant structural differences. Gene expansion supports the importance of both peroxidase types in the white-rot lifestyle of this fungus. Using a lignin model dimer and synthetic lignin, we showed that VP is able to degrade lignin. Moreover, the dual Mn-mediated and Mn-independent activity of P. ostreatus MnPs justifies their inclusion in a new peroxidase subfamily. The availability of the whole POD repertoire enabled investigation, at a biochemical level, of the existence of duplicated genes. Differences between isoenzymes are not limited to their kinetic constants. Surprising differences in their activity T50 and residual activity at both acidic and alkaline pH were observed. Directed mutagenesis and spectroscopic/structural information were combined to explain the catalytic and stability properties of the most interesting isoenzymes, and their evolutionary history was analyzed in the context of over 200 basidiomycete peroxidase sequences. CONCLUSIONS:The analysis of the P. ostreatus genome shows a lignin-degrading system where the role generally played by LiP has been assumed by VP. Moreover, it enabled the first characterization of the complete set of peroxidase isoenzymes in a basidiomycete, revealing strong differences in stability properties and providing enzymes of biotechnological interest.

journal_name

Biotechnol Biofuels

authors

Fernández-Fueyo E,Ruiz-Dueñas FJ,Martínez MJ,Romero A,Hammel KE,Medrano FJ,Martínez AT

doi

10.1186/1754-6834-7-2

subject

Has Abstract

pub_date

2014-01-03 00:00:00

pages

2

issue

1

issn

1754-6834

pii

1754-6834-7-2

journal_volume

7

pub_type

杂志文章
  • Metabolic engineering of Clostridium beijerinckii to improve glycerol metabolism and furfural tolerance.

    abstract:Background:Inefficient utilization of glycerol by Clostridium beijerinckii (Cb) is a major impediment to adopting glycerol metabolism as a strategy for increasing NAD(P)H regeneration, which would in turn, alleviate the toxicity of lignocellulose-derived microbial inhibitory compounds (LDMICs, e.g., furfural), and impr...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1388-9

    authors: Agu CV,Ujor V,Ezeji TC

    更新日期:2019-03-09 00:00:00

  • Transcriptomic response to prolonged ethanol production in the cyanobacterium Synechocystis sp. PCC6803.

    abstract:BACKGROUND:The production of biofuels in photosynthetic microalgae and cyanobacteria is a promising alternative to the generation of fuels from fossil resources. To be economically competitive, producer strains need to be established that synthesize the targeted product at high yield and over a long time. Engineering c...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-7-21

    authors: Dienst D,Georg J,Abts T,Jakorew L,Kuchmina E,Börner T,Wilde A,Dühring U,Enke H,Hess WR

    更新日期:2014-02-06 00:00:00

  • From grass to gas: microbiome dynamics of grass biomass acidification under mesophilic and thermophilic temperatures.

    abstract:BACKGROUND:Separating acidification and methanogenic steps in anaerobic digestion processes can help to optimize the process and contribute to producing valuable sub-products such as methane, hydrogen and organic acids. However, the full potential of this technology has not been fully explored yet. To assess the underl...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0859-0

    authors: Abendroth C,Simeonov C,Peretó J,Antúnez O,Gavidia R,Luschnig O,Porcar M

    更新日期:2017-07-03 00:00:00

  • Sexual crossing of thermophilic fungus Myceliophthora heterothallica improved enzymatic degradation of sugar beet pulp.

    abstract:BACKGROUND:Enzymatic degradation of plant biomass requires a complex mixture of many different enzymes. Like most fungi, thermophilic Myceliophthora species therefore have a large set of enzymes targeting different linkages in plant polysaccharides. The majority of these enzymes have not been functionally characterized...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0460-y

    authors: Aguilar-Pontes MV,Zhou M,van der Horst S,Theelen B,de Vries RP,van den Brink J

    更新日期:2016-02-20 00:00:00

  • Bamboo lignocellulose degradation by gut symbiotic microbiota of the bamboo snout beetle Cyrtotrachelus buqueti.

    abstract:Background:Gut symbiotic microbiota plays a critical role in nutrient supply, digestion, and absorption. The bamboo snout beetle, Cyrtotrachelus buqueti, a common pest of several bamboo species, exhibits high lignocellulolytic enzyme activity and contains various CAZyme genes. However, to date, no studies have evaluate...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1411-1

    authors: Luo C,Li Y,Chen Y,Fu C,Long W,Xiao X,Liao H,Yang Y

    更新日期:2019-04-01 00:00:00

  • Electron balancing under different sink conditions reveals positive effects on photon efficiency and metabolic activity of Synechocystis sp. PCC 6803.

    abstract:Background:Cyanobacteria are ideal model organisms to exploit photosynthetically derived electrons or fixed carbon for the biotechnological synthesis of high value compounds and energy carriers. Much effort is spent on the rational design of heterologous pathways to produce value-added chemicals. Much less focus is dra...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1378-y

    authors: Grund M,Jakob T,Wilhelm C,Bühler B,Schmid A

    更新日期:2019-02-27 00:00:00

  • Multifunctional elastin-like polypeptide renders β-glucosidase enzyme phase transition and high stability.

    abstract:Background:In the enzymatic conversion of biomass, it becomes an important issue to efficiently and cost-effectively degrade cellulose into fermentable glucose. β-Glucosidase (Bgluc), an essential member of cellulases, plays a critical role in cellulosic biomass degradation. The difficulty in improving the stability of...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1497-5

    authors: Zhou Y,Li X,Yan D,Addai Peprah F,Ji X,Fletcher EE,Wang Y,Wang Y,Gu J,Lin F,Shi H

    更新日期:2019-06-24 00:00:00

  • Quantitative analysis of the effects of morphological changes on extracellular electron transfer rates in cyanobacteria.

    abstract:Background:Understanding the extracellular electron transport pathways in cyanobacteria is a major factor towards developing biophotovoltaics. Stressing cyanobacteria cells environmentally and then probing changes in physiology or metabolism following a significant change in electron transfer rates is a common approach...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-01788-8

    authors: Okedi TI,Fisher AC,Yunus K

    更新日期:2020-08-26 00:00:00

  • Parallel metatranscriptome analyses of host and symbiont gene expression in the gut of the termite Reticulitermes flavipes.

    abstract:BACKGROUND:Termite lignocellulose digestion is achieved through a collaboration of host plus prokaryotic and eukaryotic symbionts. In the present work, we took a combined host and symbiont metatranscriptomic approach for investigating the digestive contributions of host and symbiont in the lower termite Reticulitermes ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-2-25

    authors: Tartar A,Wheeler MM,Zhou X,Coy MR,Boucias DG,Scharf ME

    更新日期:2009-10-15 00:00:00

  • Peptide-mediated microalgae harvesting method for efficient biofuel production.

    abstract:BACKGROUND:Production of biofuels from microalgae has been recognized to be a promising route for a sustainable energy supply. However, the microalgae harvesting process is a bottleneck for industrialization because it is energy intensive. Thus, by displaying interactive protein factors on the cell wall, oleaginous mic...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0406-9

    authors: Maeda Y,Tateishi T,Niwa Y,Muto M,Yoshino T,Kisailus D,Tanaka T

    更新日期:2016-01-13 00:00:00

  • Biohydrogen production from arabinose and glucose using extreme thermophilic anaerobic mixed cultures.

    abstract:BACKGROUND:Second generation hydrogen fermentation technologies using organic agricultural and forestry wastes are emerging. The efficient microbial fermentation of hexoses and pentoses resulting from the pretreatment of lingocellulosic materials is essential for the success of these processes. RESULTS:Conversion of a...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-5-6

    authors: Abreu AA,Karakashev D,Angelidaki I,Sousa DZ,Alves MM

    更新日期:2012-02-13 00:00:00

  • Engineering xylose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production.

    abstract:BACKGROUND:There has been a great deal of interest in fuel productions from lignocellulosic biomass to minimize the conflict between food and fuel use. The bioconversion of xylose, which is the second most abundant sugar present after glucose in lignocellulosic biomass, is important for the development of cost effectiv...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-134

    authors: Kurosawa K,Wewetzer SJ,Sinskey AJ

    更新日期:2013-09-16 00:00:00

  • Bioconversion of biodiesel refinery waste in the bioemulsifier by Trichosporon mycotoxinivorans CLA2.

    abstract:BACKGROUND:The microbial bioemulsifiers was surface active compounds, are more effective in stabilizing oil-in-water emulsions. The yeasts have been isolated to produce bioemulsifiers from vegetable oils and industrial wastes. RESULTS:Trichosporon mycotoxinivorans CLA2 is bioemulsifier-producing yeast strain isolated ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-5-29

    authors: de Souza Monteiro A,Domingues VS,Souza MV,Lula I,Gonçalves DB,de Siqueira EP,Dos Santos VL

    更新日期:2012-05-06 00:00:00

  • Transparent polyvinyl-alcohol cryogel as immobilisation matrix for continuous biohydrogen production by phototrophic bacteria.

    abstract:Background:Phototrophic purple non-sulfur bacteria (PNSB) have gained attention for their ability to produce a valuable clean energy source in the form biohydrogen via photofermentation of a wide variety of organic wastes. For maturation of these phototrophic bioprocesses towards commercial feasibility, development of ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-01743-7

    authors: du Toit JP,Pott RWM

    更新日期:2020-06-09 00:00:00

  • Elucidation of the effect of ionic liquid pretreatment on rice husk via structural analyses.

    abstract:UNLABELLED: BACKGROUND:In the present study, three ionic liquids, namely 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc), and 1-ethyl-3-methylimidazolium diethyl phosphate ([EMIM]DEP), were used to partially dissolve rice husk, after which the cellulose were regenerated...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-5-67

    authors: Ang TN,Ngoh GC,Chua AS,Lee MG

    更新日期:2012-09-07 00:00:00

  • Understanding the structural characteristics of water-soluble phenolic compounds from four pretreatments of corn stover and their inhibitory effects on enzymatic hydrolysis and fermentation.

    abstract:Background:For bioethanol production from lignocellulosic biomass, phenolics derived from pretreatment have been generally considered as highly inhibitory towards enzymatic hydrolysis and fermentation. As phenolics are produced from lignin degradation during pretreatment, it is likely that the pretreatment will exert a...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-01686-z

    authors: Chen X,Zhai R,Li Y,Yuan X,Liu ZH,Jin M

    更新日期:2020-03-11 00:00:00

  • Characterization of a novel sugar transporter involved in sugarcane bagasse degradation in Trichoderma reesei.

    abstract:Background:Trichoderma reesei is a saprophytic fungus implicated in the degradation of polysaccharides present in the cell wall of plants. T. reesei has been recognized as the most important industrial fungus that secretes and produces cellulase enzymes that are employed in the production of second generation bioethano...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1084-1

    authors: Nogueira KMV,de Paula RG,Antoniêto ACC,Dos Reis TF,Carraro CB,Silva AC,Almeida F,Rechia CGV,Goldman GH,Silva RN

    更新日期:2018-04-02 00:00:00

  • Co-production of acetoin and succinic acid by metabolically engineered Enterobacter cloacae.

    abstract:BACKGROUND:Renewable chemicals have attracted attention due to increasing interest in environmental concerns and resource utilization. Biobased production of industrial compounds from nonfood biomass has become increasingly important as a sustainable replacement for traditional petroleum-based production processes depe...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-021-01878-1

    authors: Su HY,Li HY,Xie CY,Fei Q,Cheng KK

    更新日期:2021-01-19 00:00:00

  • Comprehensive characterization of non-cellulosic recalcitrant cell wall carbohydrates in unhydrolyzed solids from AFEX-pretreated corn stover.

    abstract:BACKGROUND:Inefficient carbohydrate conversion has been an unsolved problem for various lignocellulosic biomass pretreatment technologies, including AFEX, dilute acid, and ionic liquid pretreatments. Previous work has shown 22% of total carbohydrates are typically unconverted, remaining as soluble or insoluble oligomer...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0757-5

    authors: Gunawan C,Xue S,Pattathil S,da Costa Sousa L,Dale BE,Balan V

    更新日期:2017-03-29 00:00:00

  • A novel population balance model for the dilute acid hydrolysis of hemicellulose.

    abstract:BACKGROUND:Acid hydrolysis is a popular pretreatment for removing hemicellulose from lignocelluloses in order to produce a digestible substrate for enzymatic saccharification. In this work, a novel model for the dilute acid hydrolysis of hemicellulose within sugarcane bagasse is presented and calibrated against experim...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0211-5

    authors: Greenwood AA,Farrell TW,Zhang Z,O'Hara IM

    更新日期:2015-02-19 00:00:00

  • Metabolic engineering of a fast-growing cyanobacterium Synechococcus elongatus PCC 11801 for photoautotrophic production of succinic acid.

    abstract:Background:Cyanobacteria, a group of photosynthetic prokaryotes, are being increasingly explored for direct conversion of carbon dioxide to useful chemicals. However, efforts to engineer these photoautotrophs have resulted in low product titers. This may be ascribed to the bottlenecks in metabolic pathways, which need ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-01727-7

    authors: Sengupta S,Jaiswal D,Sengupta A,Shah S,Gadagkar S,Wangikar PP

    更新日期:2020-05-18 00:00:00

  • Remembering Mary (1917 to 2008): editorial introduction to the thematic series on the life and lifework of Mary Mandels, first lady of cellulase research.

    abstract::Editorial introduction to the thematic series on the life and lifework of Mary Mandels. ...

    journal_title:Biotechnology for biofuels

    pub_type: 社论

    doi:10.1186/1754-6834-2-23

    authors: Bayer EA

    更新日期:2009-09-01 00:00:00

  • Increased drought tolerance in plants engineered for low lignin and low xylan content.

    abstract:Background:We previously developed several strategies to engineer plants to produce cost-efficient biofuels from plant biomass. Engineered Arabidopsis plants with low xylan and lignin content showed normal growth and improved saccharification efficiency under standard growth conditions. However, it remains to be determ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1196-7

    authors: Yan J,Aznar A,Chalvin C,Birdseye DS,Baidoo EEK,Eudes A,Shih PM,Loqué D,Zhang A,Scheller HV

    更新日期:2018-07-18 00:00:00

  • Leveraging transcription factors to speed cellobiose fermentation by Saccharomyces cerevisiae.

    abstract:BACKGROUND:Saccharomyces cerevisiae, a key organism used for the manufacture of renewable fuels and chemicals, has been engineered to utilize non-native sugars derived from plant cell walls, such as cellobiose and xylose. However, the rates and efficiencies of these non-native sugar fermentations pale in comparison wit...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-014-0126-6

    authors: Lin Y,Chomvong K,Acosta-Sampson L,Estrela R,Galazka JM,Kim SR,Jin YS,Cate JH

    更新日期:2014-08-27 00:00:00

  • Seed-specific suppression of ADP-glucose pyrophosphorylase in Camelina sativa increases seed size and weight.

    abstract:Background:Camelina (Camelina sativa L.) is a promising oilseed crop that may provide sustainable feedstock for biofuel production. One of the major drawbacks of Camelina is its smaller seeds compared to other major oil crops such as canola, which limit oil yield and may also pose challenges in successful seedling esta...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1334-2

    authors: Na G,Aryal N,Fatihi A,Kang J,Lu C

    更新日期:2018-12-18 00:00:00

  • Allelopathy as a potential strategy to improve microalgae cultivation.

    abstract::One of the main obstacles for continuous productivity in microalgae cultivation is the presence of biological contaminants capable of eliminating large numbers of cells in a matter of days or even hours. However, a number of strategies are being used to combat and prevent contamination in microalgae cultivation. These...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-152

    authors: Bacellar Mendes LB,Vermelho AB

    更新日期:2013-10-21 00:00:00

  • Dcm methylation is detrimental to plasmid transformation in Clostridium thermocellum.

    abstract:UNLABELLED: BACKGROUND:Industrial production of biofuels and other products by cellulolytic microorganisms is of interest but hindered by the nascent state of genetic tools. Although a genetic system for Clostridium thermocellum DSM1313 has recently been developed, available methods achieve relatively low efficiency a...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-5-30

    authors: Guss AM,Olson DG,Caiazza NC,Lynd LR

    更新日期:2012-05-06 00:00:00

  • Efficient production of d-lactate from methane in a lactate-tolerant strain of Methylomonas sp. DH-1 generated by adaptive laboratory evolution.

    abstract:Background:Methane, a main component of natural gas and biogas, has gained much attention as an abundant and low-cost carbon source. Methanotrophs, which can use methane as a sole carbon and energy source, are promising hosts to produce value-added chemicals from methane, but their metabolic engineering is still challe...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1574-9

    authors: Lee JK,Kim S,Kim W,Kim S,Cha S,Moon H,Hur DH,Kim SY,Na JG,Lee JW,Lee EY,Hahn JS

    更新日期:2019-09-30 00:00:00

  • Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates.

    abstract:: A range of lignocellulosic feedstocks (including agricultural, softwood and hardwood substrates) were pretreated with either sulfur dioxide-catalyzed steam or an ethanol organosolv procedure to try to establish a reliable assessment of the factors governing the minimum protein loading that could be used to achieve ef...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-4-3

    authors: Arantes V,Saddler JN

    更新日期:2011-02-10 00:00:00

  • Direct and up-close views of plant cell walls show a leading role for lignin-modifying enzymes on ensuing xylanases.

    abstract:BACKGROUND:A key barrier that limits the full potential of biological processes to create new, sustainable materials and fuels from plant fibre is limited enzyme accessibility to polysaccharides and lignin that characterize lignocellulose networks. Moreover, the heterogeneity of lignocellulosic substrates means that di...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-014-0176-9

    authors: Jeremic D,Goacher RE,Yan R,Karunakaran C,Master ER

    更新日期:2014-12-31 00:00:00