Metabolic engineering of a fast-growing cyanobacterium Synechococcus elongatus PCC 11801 for photoautotrophic production of succinic acid.

Abstract:

Background:Cyanobacteria, a group of photosynthetic prokaryotes, are being increasingly explored for direct conversion of carbon dioxide to useful chemicals. However, efforts to engineer these photoautotrophs have resulted in low product titers. This may be ascribed to the bottlenecks in metabolic pathways, which need to be identified for rational engineering. We engineered the recently reported, fast-growing and robust cyanobacterium, Synechococcus elongatus PCC 11801 to produce succinate, an important platform chemical. Previously, engineering of the model cyanobacterium S. elongatus PCC 7942 has resulted in succinate titer of 0.43 g l-1 in 8 days. Results:Building on the previous report, expression of α-ketoglutarate decarboxylase, succinate semialdehyde dehydrogenase and phosphoenolpyruvate carboxylase yielded a succinate titer of 0.6 g l-1 in 5 days suggesting that PCC 11801 is better suited as host for production. Profiling of the engineered strains for 57 intermediate metabolites, a number of enzymes and qualitative analysis of key transcripts revealed potential flux control points. Based on this, we evaluated the effects of overexpression of sedoheptulose-1,7-bisphosphatase, citrate synthase and succinate transporters and knockout of succinate dehydrogenase and glycogen synthase A. The final construct with seven genes overexpressed and two genes knocked out resulted in photoautotrophic production of 0.93 g l-1 succinate in 5 days. Conclusion:While the fast-growing strain PCC 11801 yielded a much higher titer than the model strain, the efficient photoautotrophy of this novel isolate needs to be harnessed further for the production of desired chemicals. Engineered strains of S. elongatus PCC 11801 showed dramatic alterations in the levels of several metabolites suggesting far reaching effects of pathway engineering. Attempts to overexpress enzymes deemed to be flux controlling led to the emergence of other potential rate-limiting steps. Thus, this process of debottlenecking of the pathway needs to be repeated several times to obtain a significantly superior succinate titer.

journal_name

Biotechnol Biofuels

authors

Sengupta S,Jaiswal D,Sengupta A,Shah S,Gadagkar S,Wangikar PP

doi

10.1186/s13068-020-01727-7

subject

Has Abstract

pub_date

2020-05-18 00:00:00

pages

89

issn

1754-6834

pii

1727

journal_volume

13

pub_type

杂志文章
  • Presence does not imply activity: DNA and RNA patterns differ in response to salt perturbation in anaerobic digestion.

    abstract:BACKGROUND:The microbial community in anaerobic digestion is mainly monitored by means of DNA-based methods. This may lead to incorrect interpretation of the community parameters, because microbial abundance does not necessarily reflect activity. In this research, the difference between microbial community response on ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0652-5

    authors: De Vrieze J,Regueiro L,Props R,Vilchez-Vargas R,Jáuregui R,Pieper DH,Lema JM,Carballa M

    更新日期:2016-11-09 00:00:00

  • Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing.

    abstract:BACKGROUND:Renewable energy production is currently a major issue worldwide. Biogas is a promising renewable energy carrier as the technology of its production combines the elimination of organic waste with the formation of a versatile energy carrier, methane. In consequence of the complexity of the microbial communiti...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-5-41

    authors: Wirth R,Kovács E,Maróti G,Bagi Z,Rákhely G,Kovács KL

    更新日期:2012-07-12 00:00:00

  • Integration of pulp and paper technology with bioethanol production.

    abstract:BACKGROUND:Despite decades of work and billions of dollars of investments in laboratory and pilot plant projects, commercial production of cellulosic ethanol is only now beginning to emerge. Because of: (1)high technical risk coupled with; (2) high capital investment cost relative to ethanol product value, investors ha...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-13

    authors: Phillips RB,Jameel H,Chang HM

    更新日期:2013-01-28 00:00:00

  • Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae.

    abstract:BACKGROUND:Lignocellulosic materials are abundant and among the most important potential sources for bioethanol production. Although the pretreatment of lignocellulose is necessary for efficient saccharification and fermentation, numerous by-products, including furan derivatives, weak acids, and phenolic compounds, are...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-1-3

    authors: Endo A,Nakamura T,Ando A,Tokuyasu K,Shima J

    更新日期:2008-04-15 00:00:00

  • De novo transcriptome sequencing and analysis revealed the molecular basis of rapid fat accumulation by black soldier fly (Hermetia illucens, L.) for development of insectival biodiesel.

    abstract:Background:Black soldier fly (BSF, Hermetia illucens L.) can efficiently degrade organic wastes and transform into a high fat containing insect biomass that could be used as feedstock for biodiesel production. Meanwhile, the molecular regulatory basis of fat accumulation by BSF is still unclear; it is necessary to iden...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1531-7

    authors: Zhu Z,Rehman KU,Yu Y,Liu X,Wang H,Tomberlin JK,Sze SH,Cai M,Zhang J,Yu Z,Zheng J,Zheng L

    更新日期:2019-08-09 00:00:00

  • A techno-practical method for overcoming the biotoxicity and volatility obstacles of butanol and butyric acid during whole-cell catalysis by Gluconobacter oxydans.

    abstract:Background:Butyric acid is a platform chemical material, the production of which has been greatly stimulated by the diverse range of downstream applications in many industries. In particular, higher quality butyric acid used in food and medicine, is more dependent on microbiological production methods. Hence, the bio-o...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-01741-9

    authors: Hua X,Du G,Zhou X,Nawaz A,Ul Haq I,Xu Y

    更新日期:2020-06-03 00:00:00

  • Organosolv pretreatment of sorghum bagasse using a low concentration of hydrophobic solvents such as 1-butanol or 1-pentanol.

    abstract:BACKGROUND:The primary components of lignocellulosic biomass such as sorghum bagasse are cellulose, hemicellulose, and lignin. Each component can be utilized as a sustainable resource for producing biofuels and bio-based products. However, due to their complicated structures, fractionation of lignocellulosic biomass co...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0427-z

    authors: Teramura H,Sasaki K,Oshima T,Matsuda F,Okamoto M,Shirai T,Kawaguchi H,Ogino C,Hirano K,Sazuka T,Kitano H,Kikuchi J,Kondo A

    更新日期:2016-02-02 00:00:00

  • Elucidation of the effect of ionic liquid pretreatment on rice husk via structural analyses.

    abstract:UNLABELLED: BACKGROUND:In the present study, three ionic liquids, namely 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc), and 1-ethyl-3-methylimidazolium diethyl phosphate ([EMIM]DEP), were used to partially dissolve rice husk, after which the cellulose were regenerated...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-5-67

    authors: Ang TN,Ngoh GC,Chua AS,Lee MG

    更新日期:2012-09-07 00:00:00

  • Thermophilic fermentation of acetoin and 2,3-butanediol by a novel Geobacillus strain.

    abstract:UNLABELLED: BACKGROUND:Acetoin and 2,3-butanediol are two important biorefinery platform chemicals. They are currently fermented below 40°C using mesophilic strains, but the processes often suffer from bacterial contamination. RESULTS:This work reports the isolation and identification of a novel aerobic Geobacillus s...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-5-88

    authors: Xiao Z,Wang X,Huang Y,Huo F,Zhu X,Xi L,Lu JR

    更新日期:2012-12-06 00:00:00

  • Synergistic effects of mixing hybrid poplar and wheat straw biomass for bioconversion processes.

    abstract:BACKGROUND:Low cost of raw materials and good process yields are necessary for future lignocellulosic biomass biorefineries to be sustainable and profitable. A low cost feedstock will be diverse, changing as a function of seasonality and price and will most likely be available from multiple sources to the biorefinery. ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0414-9

    authors: Vera RM,Bura R,Gustafson R

    更新日期:2015-12-24 00:00:00

  • Increased ethylene production by overexpressing phosphoenolpyruvate carboxylase in the cyanobacterium Synechocystis PCC 6803.

    abstract:Background:Cyanobacteria can be metabolically engineered to convert CO2 to fuels and chemicals such as ethylene. A major challenge in such efforts is to optimize carbon fixation and partition towards target molecules. Results:The efe gene encoding an ethylene-forming enzyme was introduced into a strain of the cyanobac...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-1653-y

    authors: Durall C,Lindberg P,Yu J,Lindblad P

    更新日期:2020-01-28 00:00:00

  • In vitro oxidative decarboxylation of free fatty acids to terminal alkenes by two new P450 peroxygenases.

    abstract:BACKGROUND:P450 fatty acid decarboxylases represented by the unusual CYP152 peroxygenase family member OleTJE have been receiving great attention recently since these P450 enzymes are able to catalyze the simple and direct production of 1-alkenes for potential applications in biofuels and biomaterials. To gain more mec...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0894-x

    authors: Xu H,Ning L,Yang W,Fang B,Wang C,Wang Y,Xu J,Collin S,Laeuffer F,Fourage L,Li S

    更新日期:2017-09-07 00:00:00

  • Clostridium acetobutylicum grows vegetatively in a biofilm rich in heteropolysaccharides and cytoplasmic proteins.

    abstract:Background:Biofilms are cell communities wherein cells are embedded in a self-produced extracellular polymeric substances (EPS). The biofilm of Clostridium acetobutylicum confers the cells superior phenotypes and has been extensively exploited to produce a variety of liquid biofuels and bulk chemicals. However, little ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1316-4

    authors: Liu D,Yang Z,Chen Y,Zhuang W,Niu H,Wu J,Ying H

    更新日期:2018-11-20 00:00:00

  • Effects of pH on steam explosion extraction of acetylated galactoglucomannan from Norway spruce.

    abstract:Background:Acetylated galactoglucomannan (AcGGM) is a complex hemicellulose found in softwoods such as Norway spruce (Picea abies). AcGGM has a large potential as a biorefinery feedstock and source of oligosaccharides for high-value industrial applications. Steam explosion is an effective method for extraction of carbo...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1300-z

    authors: Michalak L,Knutsen SH,Aarum I,Westereng B

    更新日期:2018-11-09 00:00:00

  • Pelagibaca bermudensis promotes biofuel competence of Tetraselmis striata in a broad range of abiotic stressors: dynamics of quorum-sensing precursors and strategic improvement in lipid productivity.

    abstract:Background:Amelioration of biofuel feedstock of microalgae using sustainable means through synthetic ecology is a promising strategy. The co-cultivation model (Tetraselmis striata and Pelagibaca bermudensis) was evaluated for the robust biofuel production under varying stressors as well as with the selected two-stage c...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1097-9

    authors: Patidar SK,Kim SH,Kim JH,Park J,Park BS,Han MS

    更新日期:2018-04-07 00:00:00

  • Bioaugmentation of Lactobacillus delbrueckii ssp. bulgaricus TISTR 895 to enhance bio-hydrogen production of Rhodobacter sphaeroides KKU-PS5.

    abstract:BACKGROUND:Bioaugmentation or an addition of the desired microorganisms or specialized microbial strains into the anaerobic digesters can enhance the performance of microbial community in the hydrogen production process. Most of the studies focused on a bioaugmentation of native microorganisms capable of producing hydr...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0375-z

    authors: Laocharoen S,Reungsang A,Plangklang P

    更新日期:2015-11-25 00:00:00

  • Hydrolysis of untreated lignocellulosic feedstock is independent of S-lignin composition in newly classified anaerobic fungal isolate, Piromyces sp. UH3-1.

    abstract:Background:Plant biomass is an abundant but underused feedstock for bioenergy production due to its complex and variable composition, which resists breakdown into fermentable sugars. These feedstocks, however, are routinely degraded by many uncommercialized microbes such as anaerobic gut fungi. These gut fungi express ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1292-8

    authors: Hooker CA,Hillman ET,Overton JC,Ortiz-Velez A,Schacht M,Hunnicutt A,Mosier NS,Solomon KV

    更新日期:2018-10-27 00:00:00

  • Understanding the structural characteristics of water-soluble phenolic compounds from four pretreatments of corn stover and their inhibitory effects on enzymatic hydrolysis and fermentation.

    abstract:Background:For bioethanol production from lignocellulosic biomass, phenolics derived from pretreatment have been generally considered as highly inhibitory towards enzymatic hydrolysis and fermentation. As phenolics are produced from lignin degradation during pretreatment, it is likely that the pretreatment will exert a...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-01686-z

    authors: Chen X,Zhai R,Li Y,Yuan X,Liu ZH,Jin M

    更新日期:2020-03-11 00:00:00

  • Metabolic engineering of Yarrowia lipolytica for thermoresistance and enhanced erythritol productivity.

    abstract:Background:Functional sugar alcohols have been widely used in the food, medicine, and pharmaceutical industries for their unique properties. Among these, erythritol is a zero calories sweetener produced by the yeast Yarrowia lipolytica. However, in wild-type strains, erythritol is produced with low productivity and yie...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-01815-8

    authors: Wang N,Chi P,Zou Y,Xu Y,Xu S,Bilal M,Fickers P,Cheng H

    更新日期:2020-10-20 00:00:00

  • Bacteriophage application restores ethanol fermentation characteristics disrupted by Lactobacillus fermentum.

    abstract:BACKGROUND:Contamination of corn mash by lactic acid bacteria (LAB) reduces the efficiency of the ethanol fermentation process. The industry relies heavily on antibiotics for contamination control and there is a need to develop alternative methods. The goals of this study were to determine the diversity and abundance o...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0325-9

    authors: Liu M,Bischoff KM,Gill JJ,Mire-Criscione MD,Berry JD,Young R,Summer EJ

    更新日期:2015-09-04 00:00:00

  • Seed-specific suppression of ADP-glucose pyrophosphorylase in Camelina sativa increases seed size and weight.

    abstract:Background:Camelina (Camelina sativa L.) is a promising oilseed crop that may provide sustainable feedstock for biofuel production. One of the major drawbacks of Camelina is its smaller seeds compared to other major oil crops such as canola, which limit oil yield and may also pose challenges in successful seedling esta...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1334-2

    authors: Na G,Aryal N,Fatihi A,Kang J,Lu C

    更新日期:2018-12-18 00:00:00

  • Proteomic and metabolomic analysis of the cellular biomarkers related to inhibitors tolerance in Zymomonas mobilis ZM4.

    abstract:Background:Toxic compounds present in both the hydrolysate and pyrolysate of lignocellulosic biomass severely hinder the further conversion of lignocellulose-derived fermentable sugars into useful chemicals by common biocatalysts like Zymomonas mobilis, which has remarkable advantages over yeast. Although the extra det...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1287-5

    authors: Chang D,Yu Z,Ul Islam Z,French WT,Zhang Y,Zhang H

    更新日期:2018-10-16 00:00:00

  • The impact of alterations in lignin deposition on cellulose organization of the plant cell wall.

    abstract:BACKGROUND:Coordination of synthesis and assembly of the polymeric components of cell walls is essential for plant growth and development. Given the degree of co-mingling and cross-linking among cell wall components, cellulose organization must be dependent on the organization of other polymers such as lignin. Here we ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0540-z

    authors: Liu J,Kim JI,Cusumano JC,Chapple C,Venugopalan N,Fischetti RF,Makowski L

    更新日期:2016-06-17 00:00:00

  • Deep metagenome and metatranscriptome analyses of microbial communities affiliated with an industrial biogas fermenter, a cow rumen, and elephant feces reveal major differences in carbohydrate hydrolysis strategies.

    abstract:BACKGROUND:The diverse microbial communities in agricultural biogas fermenters are assumed to be well adapted for the anaerobic transformation of plant biomass to methane. Compared to natural systems, biogas reactors are limited in their hydrolytic potential. The reasons for this are not understood. RESULTS:In this pa...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0534-x

    authors: Güllert S,Fischer MA,Turaev D,Noebauer B,Ilmberger N,Wemheuer B,Alawi M,Rattei T,Daniel R,Schmitz RA,Grundhoff A,Streit WR

    更新日期:2016-06-07 00:00:00

  • Bioelectrochemical production of hydrogen in an innovative pressure-retarded osmosis/microbial electrolysis cell system: experiments and modeling.

    abstract:BACKGROUND:While microbial electrolysis cells (MECs) can simultaneously produce bioelectrochemical hydrogen and treat wastewater, they consume considerable energy to overcome the unfavorable thermodynamics, which is not sustainable and economically feasible in practical applications. This study presents a proof-of-conc...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0305-0

    authors: Yuan H,Lu Y,Abu-Reesh IM,He Z

    更新日期:2015-08-14 00:00:00

  • Regional water footprints of potential biofuel production in China.

    abstract:BACKGROUND:Development of biofuels is considered as one of the important ways to replace conventional fossil energy and mitigate climate change. However, rapid increase of biofuel production could cause other environmental concerns in China such as water stress. This study is intended to evaluate the life-cycle water f...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0778-0

    authors: Xie X,Zhang T,Wang L,Huang Z

    更新日期:2017-04-18 00:00:00

  • Bioprocessing of Stichococcus bacillaris strain siva2011.

    abstract:BACKGROUND:Globally, the development of a cost-effective long-term renewable energy infrastructure is one of the most challenging problems faced by society today. Microalgae are rich in potential biofuel substrates such as lipids, including triacylglycerols (TAGs). Some of these algae also biosynthesize small molecule ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-7-62

    authors: Sivakumar G,Jeong K,Lay JO Jr

    更新日期:2014-04-15 00:00:00

  • Genome and methylome of the oleaginous diatom Cyclotella cryptica reveal genetic flexibility toward a high lipid phenotype.

    abstract:BACKGROUND:Improvement in the performance of eukaryotic microalgae for biofuel and bioproduct production is largely dependent on characterization of metabolic mechanisms within the cell. The marine diatom Cyclotella cryptica, which was originally identified in the Aquatic Species Program, is a promising strain of micro...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0670-3

    authors: Traller JC,Cokus SJ,Lopez DA,Gaidarenko O,Smith SR,McCrow JP,Gallaher SD,Podell S,Thompson M,Cook O,Morselli M,Jaroszewicz A,Allen EE,Allen AE,Merchant SS,Pellegrini M,Hildebrand M

    更新日期:2016-11-25 00:00:00

  • Improving L-arabinose utilization of pentose fermenting Saccharomyces cerevisiae cells by heterologous expression of L-arabinose transporting sugar transporters.

    abstract:BACKGROUND:Hydrolysates of plant biomass used for the production of lignocellulosic biofuels typically contain sugar mixtures consisting mainly of D-glucose and D-xylose, and minor amounts of L-arabinose. The yeast Saccharomyces cerevisiae is the preferred microorganism for the fermentative production of ethanol but is...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-4-38

    authors: Subtil T,Boles E

    更新日期:2011-10-12 00:00:00

  • Improvement of catalytic performance of lignin peroxidase for the enhanced degradation of lignocellulose biomass based on the imbedded electron-relay in long-range electron transfer route.

    abstract:BACKGROUND:Although lignin peroxidase is claimed as a key enzyme in enzyme-catalyzed lignin degradation, in vitro enzymatic degradation of lignin was not easily observed in lab-scale experiments. It implies that other factors may hinder the enzymatic degradation of lignin. Irreversible interaction between phenolic comp...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0664-1

    authors: Pham LT,Kim SJ,Kim YH

    更新日期:2016-11-15 00:00:00