Physiological roles of pyruvate ferredoxin oxidoreductase and pyruvate formate-lyase in Thermoanaerobacterium saccharolyticum JW/SL-YS485.

Abstract:

BACKGROUND:Thermoanaerobacter saccharolyticum is a thermophilic microorganism that has been engineered to produce ethanol at high titer (30-70 g/L) and greater than 90 % theoretical yield. However, few genes involved in pyruvate to ethanol production pathway have been unambiguously identified. In T. saccharolyticum, the products of six putative pfor gene clusters and one pfl gene may be responsible for the conversion of pyruvate to acetyl-CoA. To gain insights into the physiological roles of PFOR and PFL, we studied the effect of deletions of several genes thought to encode these activities. RESULTS:It was found that pyruvate ferredoxin oxidoreductase enzyme (PFOR) is encoded by the pforA gene and plays a key role in pyruvate dissimilation. We further demonstrated that pyruvate formate-lyase activity (PFL) is encoded by the pfl gene. Although the pfl gene is normally expressed at low levels, it is crucial for biosynthesis in T. saccharolyticum. In pforA deletion strains, pfl expression increased and was able to partially compensate for the loss of PFOR activity. Deletion of both pforA and pfl resulted in a strain that required acetate and formate for growth and produced lactate as the primary fermentation product, achieving 88 % theoretical lactate yield. CONCLUSION:PFOR encoded by Tsac_0046 and PFL encoded by Tsac_0628 are only two routes for converting pyruvate to acetyl-CoA in T. saccharolyticum. The physiological role of PFOR is pyruvate dissimilation, whereas that of PFL is supplying C1 units for biosynthesis.

journal_name

Biotechnol Biofuels

authors

Zhou J,Olson DG,Lanahan AA,Tian L,Murphy SJ,Lo J,Lynd LR

doi

10.1186/s13068-015-0304-1

subject

Has Abstract

pub_date

2015-09-15 00:00:00

pages

138

issn

1754-6834

pii

304

journal_volume

8

pub_type

杂志文章
  • RCO-3 and COL-26 form an external-to-internal module that regulates the dual-affinity glucose transport system in Neurospora crassa.

    abstract:BACKGROUND:Low- and high-affinity glucose transport system is a conserved strategy of microorganism to cope with environmental glucose fluctuation for their growth and competitiveness. In Neurospora crassa, the dual-affinity glucose transport system consists of a low-affinity glucose transporter GLT-1 and two high-affi...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-021-01877-2

    authors: Li J,Liu Q,Li J,Lin L,Li X,Zhang Y,Tian C

    更新日期:2021-01-28 00:00:00

  • Elucidation of the effect of ionic liquid pretreatment on rice husk via structural analyses.

    abstract:UNLABELLED: BACKGROUND:In the present study, three ionic liquids, namely 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc), and 1-ethyl-3-methylimidazolium diethyl phosphate ([EMIM]DEP), were used to partially dissolve rice husk, after which the cellulose were regenerated...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-5-67

    authors: Ang TN,Ngoh GC,Chua AS,Lee MG

    更新日期:2012-09-07 00:00:00

  • Increased ethylene production by overexpressing phosphoenolpyruvate carboxylase in the cyanobacterium Synechocystis PCC 6803.

    abstract:Background:Cyanobacteria can be metabolically engineered to convert CO2 to fuels and chemicals such as ethylene. A major challenge in such efforts is to optimize carbon fixation and partition towards target molecules. Results:The efe gene encoding an ethylene-forming enzyme was introduced into a strain of the cyanobac...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-1653-y

    authors: Durall C,Lindberg P,Yu J,Lindblad P

    更新日期:2020-01-28 00:00:00

  • Metabolic engineering of Yarrowia lipolytica for thermoresistance and enhanced erythritol productivity.

    abstract:Background:Functional sugar alcohols have been widely used in the food, medicine, and pharmaceutical industries for their unique properties. Among these, erythritol is a zero calories sweetener produced by the yeast Yarrowia lipolytica. However, in wild-type strains, erythritol is produced with low productivity and yie...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-01815-8

    authors: Wang N,Chi P,Zou Y,Xu Y,Xu S,Bilal M,Fickers P,Cheng H

    更新日期:2020-10-20 00:00:00

  • Co-production of acetoin and succinic acid by metabolically engineered Enterobacter cloacae.

    abstract:BACKGROUND:Renewable chemicals have attracted attention due to increasing interest in environmental concerns and resource utilization. Biobased production of industrial compounds from nonfood biomass has become increasingly important as a sustainable replacement for traditional petroleum-based production processes depe...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-021-01878-1

    authors: Su HY,Li HY,Xie CY,Fei Q,Cheng KK

    更新日期:2021-01-19 00:00:00

  • Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates.

    abstract:: A range of lignocellulosic feedstocks (including agricultural, softwood and hardwood substrates) were pretreated with either sulfur dioxide-catalyzed steam or an ethanol organosolv procedure to try to establish a reliable assessment of the factors governing the minimum protein loading that could be used to achieve ef...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-4-3

    authors: Arantes V,Saddler JN

    更新日期:2011-02-10 00:00:00

  • Sugar loss and enzyme inhibition due to oligosaccharide accumulation during high solids-loading enzymatic hydrolysis.

    abstract:BACKGROUND:Accumulation of recalcitrant oligosaccharides during high-solids loading enzymatic hydrolysis of cellulosic biomass reduces biofuel yields and increases processing costs for a cellulosic biorefinery. Recalcitrant oligosaccharides in AFEX-pretreated corn stover hydrolysate accumulate to the extent of about 18...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0378-9

    authors: Xue S,Uppugundla N,Bowman MJ,Cavalier D,Da Costa Sousa L,E Dale B,Balan V

    更新日期:2015-11-26 00:00:00

  • Methane-yielding microbial communities processing lactate-rich substrates: a piece of the anaerobic digestion puzzle.

    abstract:Background:Anaerobic digestion, whose final products are methane and carbon dioxide, ensures energy flow and circulation of matter in ecosystems. This naturally occurring process is used for the production of renewable energy from biomass. Lactate, a common product of acidic fermentation, is a key intermediate in anaer...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1106-z

    authors: Detman A,Mielecki D,Pleśniak Ł,Bucha M,Janiga M,Matyasik I,Chojnacka A,Jędrysek MO,Błaszczyk MK,Sikora A

    更新日期:2018-04-21 00:00:00

  • Improving a recombinant Zymomonas mobilis strain 8b through continuous adaptation on dilute acid pretreated corn stover hydrolysate.

    abstract:BACKGROUND:Complete conversion of the major sugars of biomass including both the C5 and C6 sugars is critical for biofuel production processes. Several inhibitory compounds like acetate, hydroxymethylfurfural (HMF), and furfural are produced from the biomass pretreatment process leading to 'hydrolysate toxicity,' a maj...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0233-z

    authors: Mohagheghi A,Linger JG,Yang S,Smith H,Dowe N,Zhang M,Pienkos PT

    更新日期:2015-03-31 00:00:00

  • Bioprocessing of Stichococcus bacillaris strain siva2011.

    abstract:BACKGROUND:Globally, the development of a cost-effective long-term renewable energy infrastructure is one of the most challenging problems faced by society today. Microalgae are rich in potential biofuel substrates such as lipids, including triacylglycerols (TAGs). Some of these algae also biosynthesize small molecule ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-7-62

    authors: Sivakumar G,Jeong K,Lay JO Jr

    更新日期:2014-04-15 00:00:00

  • Product inhibition of cellulases studied with 14C-labeled cellulose substrates.

    abstract:BACKGROUND:As a green alternative for the production of transportation fuels, the enzymatic hydrolysis of lignocellulose and subsequent fermentation to ethanol are being intensively researched. To be economically feasible, the hydrolysis of lignocellulose must be conducted at a high concentration of solids, which resul...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-104

    authors: Teugjas H,Väljamäe P

    更新日期:2013-07-24 00:00:00

  • Effects of pH on steam explosion extraction of acetylated galactoglucomannan from Norway spruce.

    abstract:Background:Acetylated galactoglucomannan (AcGGM) is a complex hemicellulose found in softwoods such as Norway spruce (Picea abies). AcGGM has a large potential as a biorefinery feedstock and source of oligosaccharides for high-value industrial applications. Steam explosion is an effective method for extraction of carbo...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1300-z

    authors: Michalak L,Knutsen SH,Aarum I,Westereng B

    更新日期:2018-11-09 00:00:00

  • Production of four Neurospora crassa lytic polysaccharide monooxygenases in Pichia pastoris monitored by a fluorimetric assay.

    abstract:UNLABELLED: BACKGROUND:Recent studies demonstrate that enzymes from the glycosyl hydrolase family 61 (GH61) show lytic polysaccharide monooxygenase (PMO) activity. Together with cellobiose dehydrogenase (CDH) an enzymatic system capable of oxidative cellulose cleavage is formed, which increases the efficiency of cellu...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-5-79

    authors: Kittl R,Kracher D,Burgstaller D,Haltrich D,Ludwig R

    更新日期:2012-10-26 00:00:00

  • From wheat straw to bioethanol: integrative analysis of a separate hydrolysis and co-fermentation process with implemented enzyme production.

    abstract:BACKGROUND:Lignocellulosic ethanol has a high potential as renewable energy source. In recent years, much research effort has been spent to optimize parameters involved in the production process. Despite that, there is still a lack of comprehensive studies on process integration. Single parameters and process configura...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0232-0

    authors: Novy V,Longus K,Nidetzky B

    更新日期:2015-03-18 00:00:00

  • Lipase immobilized on functionalized superparamagnetic few-layer graphene oxide as an efficient nanobiocatalyst for biodiesel production from Chlorella vulgaris bio-oil.

    abstract:Background:Microalgae, due to its well-recognized advantages have gained renewed interest as potentially good feedstock for biodiesel. Production of fatty acid methyl esters (FAMEs) as a type of biodiesel was carried out from Chlorella vulgaris bio-oil. Biodiesel was produced in the presence of nano-biocatalysts compos...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-01688-x

    authors: Nematian T,Shakeri A,Salehi Z,Saboury AA

    更新日期:2020-03-20 00:00:00

  • Bacteriophage application restores ethanol fermentation characteristics disrupted by Lactobacillus fermentum.

    abstract:BACKGROUND:Contamination of corn mash by lactic acid bacteria (LAB) reduces the efficiency of the ethanol fermentation process. The industry relies heavily on antibiotics for contamination control and there is a need to develop alternative methods. The goals of this study were to determine the diversity and abundance o...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0325-9

    authors: Liu M,Bischoff KM,Gill JJ,Mire-Criscione MD,Berry JD,Young R,Summer EJ

    更新日期:2015-09-04 00:00:00

  • Enzymatic synthesis of l-fucose from l-fuculose using a fucose isomerase from Raoultella sp. and the biochemical and structural analyses of the enzyme.

    abstract:Background:l-Fucose is a rare sugar with potential uses in the pharmaceutical, cosmetic, and food industries. The enzymatic approach using l-fucose isomerase, which interconverts l-fucose and l-fuculose, can be an efficient way of producing l-fucose for industrial applications. Here, we performed biochemical and struct...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1619-0

    authors: Kim IJ,Kim DH,Nam KH,Kim KH

    更新日期:2019-12-05 00:00:00

  • The impact of alterations in lignin deposition on cellulose organization of the plant cell wall.

    abstract:BACKGROUND:Coordination of synthesis and assembly of the polymeric components of cell walls is essential for plant growth and development. Given the degree of co-mingling and cross-linking among cell wall components, cellulose organization must be dependent on the organization of other polymers such as lignin. Here we ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0540-z

    authors: Liu J,Kim JI,Cusumano JC,Chapple C,Venugopalan N,Fischetti RF,Makowski L

    更新日期:2016-06-17 00:00:00

  • Differential β-glucosidase expression as a function of carbon source availability in Talaromyces amestolkiae: a genomic and proteomic approach.

    abstract:BACKGROUND:Genomic and proteomic analysis are potent tools for metabolic characterization of microorganisms. Although cellulose usually triggers cellulase production in cellulolytic fungi, the secretion of the different enzymes involved in polymer conversion is subjected to different factors, depending on growth condit...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0844-7

    authors: de Eugenio LI,Méndez-Líter JA,Nieto-Domínguez M,Alonso L,Gil-Muñoz J,Barriuso J,Prieto A,Martínez MJ

    更新日期:2017-06-23 00:00:00

  • Efficient production of d-lactate from methane in a lactate-tolerant strain of Methylomonas sp. DH-1 generated by adaptive laboratory evolution.

    abstract:Background:Methane, a main component of natural gas and biogas, has gained much attention as an abundant and low-cost carbon source. Methanotrophs, which can use methane as a sole carbon and energy source, are promising hosts to produce value-added chemicals from methane, but their metabolic engineering is still challe...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1574-9

    authors: Lee JK,Kim S,Kim W,Kim S,Cha S,Moon H,Hur DH,Kim SY,Na JG,Lee JW,Lee EY,Hahn JS

    更新日期:2019-09-30 00:00:00

  • Optimization of the dilute maleic acid pretreatment of wheat straw.

    abstract:BACKGROUND:In this study, the dilute maleic acid pretreatment of wheat straw is optimized, using pretreatment time, temperature and maleic acid concentration as design variables. A central composite design was applied to the experimental set up. The response factors used in this study are: (1) glucose benefits from imp...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-2-31

    authors: Kootstra AM,Beeftink HH,Scott EL,Sanders JP

    更新日期:2009-12-21 00:00:00

  • Dcm methylation is detrimental to plasmid transformation in Clostridium thermocellum.

    abstract:UNLABELLED: BACKGROUND:Industrial production of biofuels and other products by cellulolytic microorganisms is of interest but hindered by the nascent state of genetic tools. Although a genetic system for Clostridium thermocellum DSM1313 has recently been developed, available methods achieve relatively low efficiency a...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-5-30

    authors: Guss AM,Olson DG,Caiazza NC,Lynd LR

    更新日期:2012-05-06 00:00:00

  • Comprehensive characterization of non-cellulosic recalcitrant cell wall carbohydrates in unhydrolyzed solids from AFEX-pretreated corn stover.

    abstract:BACKGROUND:Inefficient carbohydrate conversion has been an unsolved problem for various lignocellulosic biomass pretreatment technologies, including AFEX, dilute acid, and ionic liquid pretreatments. Previous work has shown 22% of total carbohydrates are typically unconverted, remaining as soluble or insoluble oligomer...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0757-5

    authors: Gunawan C,Xue S,Pattathil S,da Costa Sousa L,Dale BE,Balan V

    更新日期:2017-03-29 00:00:00

  • Comparative secretome analysis of Trichoderma asperellum S4F8 and Trichoderma reesei Rut C30 during solid-state fermentation on sugarcane bagasse.

    abstract:BACKGROUND:The lignocellulosic enzymes of Trichoderma species have received particular attention with regard to biomass conversion to biofuels, but the production cost of these enzymes remains a significant hurdle for their commercial application. In this study, we quantitatively compared the lignocellulolytic enzyme p...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-172

    authors: Marx IJ,van Wyk N,Smit S,Jacobson D,Viljoen-Bloom M,Volschenk H

    更新日期:2013-11-29 00:00:00

  • The extracellular endo-β-1,4-xylanase with multidomain from the extreme thermophile Caldicellulosiruptor lactoaceticus is specific for insoluble xylan degradation.

    abstract:Background:The extremely thermophilic bacterium Caldicellulosiruptor lactoaceticus can degrade and metabolize untreated lignocellulosic biomass containing xylan. The mechanism of the bacterium for degradation of insoluble xylan in untreated biomass has not been revealed. Results:In the present study, the only annotate...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1480-1

    authors: Jia X,Han Y

    更新日期:2019-06-08 00:00:00

  • Seed-specific suppression of ADP-glucose pyrophosphorylase in Camelina sativa increases seed size and weight.

    abstract:Background:Camelina (Camelina sativa L.) is a promising oilseed crop that may provide sustainable feedstock for biofuel production. One of the major drawbacks of Camelina is its smaller seeds compared to other major oil crops such as canola, which limit oil yield and may also pose challenges in successful seedling esta...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1334-2

    authors: Na G,Aryal N,Fatihi A,Kang J,Lu C

    更新日期:2018-12-18 00:00:00

  • Improving L-arabinose utilization of pentose fermenting Saccharomyces cerevisiae cells by heterologous expression of L-arabinose transporting sugar transporters.

    abstract:BACKGROUND:Hydrolysates of plant biomass used for the production of lignocellulosic biofuels typically contain sugar mixtures consisting mainly of D-glucose and D-xylose, and minor amounts of L-arabinose. The yeast Saccharomyces cerevisiae is the preferred microorganism for the fermentative production of ethanol but is...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-4-38

    authors: Subtil T,Boles E

    更新日期:2011-10-12 00:00:00

  • Elucidating the role of ferrous ion cocatalyst in enhancing dilute acid pretreatment of lignocellulosic biomass.

    abstract:BACKGROUND:Recently developed iron cocatalyst enhancement of dilute acid pretreatment of biomass is a promising approach for enhancing sugar release from recalcitrant lignocellulosic biomass. However, very little is known about the underlying mechanisms of this enhancement. In the current study, our aim was to identify...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-4-48

    authors: Wei H,Donohoe BS,Vinzant TB,Ciesielski PN,Wang W,Gedvilas LM,Zeng Y,Johnson DK,Ding SY,Himmel ME,Tucker MP

    更新日期:2011-11-10 00:00:00

  • Scale-up and evaluation of high solid ionic liquid pretreatment and enzymatic hydrolysis of switchgrass.

    abstract:BACKGROUND:Ionic liquid (IL) pretreatment is receiving significant attention as a potential process that enables fractionation of lignocellulosic biomass and produces high yields of fermentable sugars suitable for the production of renewable fuels. However, successful optimization and scale up of IL pretreatment involv...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-154

    authors: Li C,Tanjore D,He W,Wong J,Gardner JL,Sale KL,Simmons BA,Singh S

    更新日期:2013-10-25 00:00:00

  • Structure-based directed evolution improves S. cerevisiae growth on xylose by influencing in vivo enzyme performance.

    abstract:Background:Efficient bioethanol production from hemicellulose feedstocks by Saccharomyces cerevisiae requires xylose utilization. Whereas S. cerevisiae does not metabolize xylose, engineered strains that express xylose isomerase can metabolize xylose by converting it to xylulose. For this, the type II xylose isomerase ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1643-0

    authors: Lee M,Rozeboom HJ,Keuning E,de Waal P,Janssen DB

    更新日期:2020-01-11 00:00:00