Genomic comparison of Clostridium species with the potential of utilizing red algal biomass for biobutanol production.

Abstract:

Background:Sustainable biofuels, which are widely considered as an attractive alternative to fossil fuels, can be generated by utilizing various biomass from the environment. Marine biomass, such as red algal biomass, is regarded as one potential renewable substrate source for biofuels conversion due to its abundance of fermentable sugars (e.g., galactose). Previous studies focused on the enhancement of biofuels production from different Clostridium species; however, there has been limited investigation into their metabolic pathways, especially on the conversion of biofuels from galactose, via whole genomic comparison and evolutionary analysis. Results:Two galactose-utilizing Clostridial strains were examined and identified as Clostridium acetobutylicum strain WA and C. beijerinckii strain WB. Via the genomic sequencing of both strains, the comparison of the whole genome together with the relevant protein prediction of 33 other Clostridium species was established to reveal a clear genome profile based upon various genomic features. Among them, five representative strains, including C. beijerinckii NCIMB14988, C. diolis DSM 15410, C. pasteurianum BC1, strain WA and WB, were further discussed to demonstrate the main differences among their respective metabolic pathways, especially in their carbohydrate metabolism. The metabolic pathways involved in the generation of biofuels and other potential products (e.g., riboflavin) were also reconstructed based on the utilization of marine biomass. Finally, a batch fermentation process was performed to verify the fermentative products from strains WA and WB using 60 g/L of galactose, which is the main hydrolysate from algal biomass. It was observed that strain WA and WB could produce up to 16.98 and 12.47 g/L of biobutanol, together with 21,560 and 10,140 mL/L biohydrogen, respectively. Conclusions:The determination of the production of various biofuels by both strains WA and WB and their genomic comparisons with other typical Clostridium species on the analysis of various metabolic pathways was presented. Through the identification of their metabolic pathways, which are involved in the conversion of galactose into various potential products, such as biobutanol, the obtained results extend the current insight into the potential capability of utilizing marine red algal biomass and provide a systematic investigation into the relationship between this genus and the generation of sustainable bioenergy.

journal_name

Biotechnol Biofuels

authors

Sun C,Zhang S,Xin F,Shanmugam S,Wu YR

doi

10.1186/s13068-018-1044-9

subject

Has Abstract

pub_date

2018-02-15 00:00:00

pages

42

issn

1754-6834

pii

1044

journal_volume

11

pub_type

杂志文章
  • Enzymatic synthesis of l-fucose from l-fuculose using a fucose isomerase from Raoultella sp. and the biochemical and structural analyses of the enzyme.

    abstract:Background:l-Fucose is a rare sugar with potential uses in the pharmaceutical, cosmetic, and food industries. The enzymatic approach using l-fucose isomerase, which interconverts l-fucose and l-fuculose, can be an efficient way of producing l-fucose for industrial applications. Here, we performed biochemical and struct...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1619-0

    authors: Kim IJ,Kim DH,Nam KH,Kim KH

    更新日期:2019-12-05 00:00:00

  • Improving a recombinant Zymomonas mobilis strain 8b through continuous adaptation on dilute acid pretreated corn stover hydrolysate.

    abstract:BACKGROUND:Complete conversion of the major sugars of biomass including both the C5 and C6 sugars is critical for biofuel production processes. Several inhibitory compounds like acetate, hydroxymethylfurfural (HMF), and furfural are produced from the biomass pretreatment process leading to 'hydrolysate toxicity,' a maj...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0233-z

    authors: Mohagheghi A,Linger JG,Yang S,Smith H,Dowe N,Zhang M,Pienkos PT

    更新日期:2015-03-31 00:00:00

  • Cofactor engineering through heterologous expression of an NADH oxidase and its impact on metabolic flux redistribution in Klebsiella pneumoniae.

    abstract:UNLABELLED: BACKGROUND:Acetoin is an important bio-based platform chemical. However, it is usually existed as a minor byproduct of 2,3-butanediol fermentation in bacteria. RESULTS:The present study reports introducing an exogenous NAD+ regeneration sysytem into a 2,3-butanediol producing strain Klebsiella pneumoniae ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-7

    authors: Ji XJ,Xia ZF,Fu NH,Nie ZK,Shen MQ,Tian QQ,Huang H

    更新日期:2013-01-25 00:00:00

  • One-step process of hydrothermal and alkaline treatment of wheat straw for improving the enzymatic saccharification.

    abstract:Background:To increase the production of bioethanol, a two-step process based on hydrothermal and dilute alkaline treatment was applied to reduce the natural resistance of biomass. However, the process required a large amount of water and a long operation time due to the solid/liquid separation before the alkaline trea...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1140-x

    authors: Sun S,Zhang L,Liu F,Fan X,Sun RC

    更新日期:2018-05-12 00:00:00

  • Lignosulfonate-mediated cellulase adsorption: enhanced enzymatic saccharification of lignocellulose through weakening nonproductive binding to lignin.

    abstract:BACKGROUND:Thermochemical pretreatment of lignocellulose is crucial to bioconversion in the fields of biorefinery and biofuels. However, the enzyme inhibitors in pretreatment hydrolysate make solid substrate washing and hydrolysate detoxification indispensable prior to enzymatic hydrolysis. Sulfite pretreatment to over...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-156

    authors: Wang Z,Zhu J,Fu Y,Qin M,Shao Z,Jiang J,Yang F

    更新日期:2013-11-05 00:00:00

  • Structural evaluation and bioethanol production by simultaneous saccharification and fermentation with biodegraded triploid poplar.

    abstract:BACKGROUND:Pretreatment is a key step to decrease the recalcitrance of lignocelluloses and then increase the digestibility of cellulose in second-generation bioethanol production. In this study, wood chips from triploid poplar were biopretreated with white rot fungus Trametes velutina D10149. The effects of incubation ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-42

    authors: Wang K,Yang H,Wang W,Sun RC

    更新日期:2013-03-21 00:00:00

  • Physical and chemical differences between one-stage and two-stage hydrothermal pretreated hardwood substrates for use in cellulosic ethanol production.

    abstract:BACKGROUND:There are many different types of pretreatment carried out to prepare cellulosic substrates for fermentation. In this study, one- and two-stage hydrothermal pretreatment were carried out to determine their effects on subsequent fermentations. The two substrates were found to behave differently during ferment...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0446-9

    authors: Guilliams A,Pattathil S,Willies D,Richards M,Pu Y,Kandemkavil S,Wiswall E

    更新日期:2016-02-03 00:00:00

  • Methane-yielding microbial communities processing lactate-rich substrates: a piece of the anaerobic digestion puzzle.

    abstract:Background:Anaerobic digestion, whose final products are methane and carbon dioxide, ensures energy flow and circulation of matter in ecosystems. This naturally occurring process is used for the production of renewable energy from biomass. Lactate, a common product of acidic fermentation, is a key intermediate in anaer...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1106-z

    authors: Detman A,Mielecki D,Pleśniak Ł,Bucha M,Janiga M,Matyasik I,Chojnacka A,Jędrysek MO,Błaszczyk MK,Sikora A

    更新日期:2018-04-21 00:00:00

  • Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae.

    abstract:BACKGROUND:Lignocellulosic materials are abundant and among the most important potential sources for bioethanol production. Although the pretreatment of lignocellulose is necessary for efficient saccharification and fermentation, numerous by-products, including furan derivatives, weak acids, and phenolic compounds, are...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-1-3

    authors: Endo A,Nakamura T,Ando A,Tokuyasu K,Shima J

    更新日期:2008-04-15 00:00:00

  • Techno-economic potential of bioethanol from bamboo in China.

    abstract:BACKGROUND:Bamboo is potentially an interesting feedstock for advanced bioethanol production in China due to its natural abundance, rapid growth, perennial nature and low management requirements. Liquid hot water (LHW) pretreatment was selected as a promising technology to enhance sugar release from bamboo lignocellulo...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-173

    authors: Littlewood J,Wang L,Turnbull C,Murphy RJ

    更新日期:2013-11-29 00:00:00

  • Consolidated bioprocessing of Populus using Clostridium (Ruminiclostridium) thermocellum: a case study on the impact of lignin composition and structure.

    abstract:BACKGROUND:Higher ratios of syringyl-to-guaiacyl (S/G) lignin components of Populus were shown to improve sugar release by enzymatic hydrolysis using commercial blends. Cellulolytic microbes are often robust biomass hydrolyzers and may offer cost advantages; however, it is unknown whether their activity can also be sig...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0445-x

    authors: Dumitrache A,Akinosho H,Rodriguez M Jr,Meng X,Yoo CG,Natzke J,Engle NL,Sykes RW,Tschaplinski TJ,Muchero W,Ragauskas AJ,Davison BH,Brown SD

    更新日期:2016-02-04 00:00:00

  • Nitrogen and phosphorus removal from anaerobically digested wastewater by microalgae cultured in a novel membrane photobioreactor.

    abstract:Background:With the further development of anaerobic digestion, an increasing output of anaerobically digested wastewater (ADW), which typically contained high concentrations of ammonium, phosphate, and suspended solids, was inevitable. Microalgae cultivation offered a potential waste-to-value strategy to reduce the hi...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1190-0

    authors: Chen X,Li Z,He N,Zheng Y,Li H,Wang H,Wang Y,Lu Y,Li Q,Peng Y

    更新日期:2018-07-09 00:00:00

  • Transcriptomic response to prolonged ethanol production in the cyanobacterium Synechocystis sp. PCC6803.

    abstract:BACKGROUND:The production of biofuels in photosynthetic microalgae and cyanobacteria is a promising alternative to the generation of fuels from fossil resources. To be economically competitive, producer strains need to be established that synthesize the targeted product at high yield and over a long time. Engineering c...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-7-21

    authors: Dienst D,Georg J,Abts T,Jakorew L,Kuchmina E,Börner T,Wilde A,Dühring U,Enke H,Hess WR

    更新日期:2014-02-06 00:00:00

  • The extracellular endo-β-1,4-xylanase with multidomain from the extreme thermophile Caldicellulosiruptor lactoaceticus is specific for insoluble xylan degradation.

    abstract:Background:The extremely thermophilic bacterium Caldicellulosiruptor lactoaceticus can degrade and metabolize untreated lignocellulosic biomass containing xylan. The mechanism of the bacterium for degradation of insoluble xylan in untreated biomass has not been revealed. Results:In the present study, the only annotate...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1480-1

    authors: Jia X,Han Y

    更新日期:2019-06-08 00:00:00

  • Scale-up and evaluation of high solid ionic liquid pretreatment and enzymatic hydrolysis of switchgrass.

    abstract:BACKGROUND:Ionic liquid (IL) pretreatment is receiving significant attention as a potential process that enables fractionation of lignocellulosic biomass and produces high yields of fermentable sugars suitable for the production of renewable fuels. However, successful optimization and scale up of IL pretreatment involv...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-154

    authors: Li C,Tanjore D,He W,Wong J,Gardner JL,Sale KL,Simmons BA,Singh S

    更新日期:2013-10-25 00:00:00

  • A truncated form of the Carbon catabolite repressor 1 increases cellulase production in Trichoderma reesei.

    abstract:BACKGROUND:Rut-C30 is a cellulase-hyperproducing Trichoderma reesei strain and, consequently, became the ancestor of most industry strains used in the production of plant cell wall-degrading enzymes, in particular cellulases. Due to three rounds of undirected mutagenesis its genetic background differs from the wild-typ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-014-0129-3

    authors: Mello-de-Sousa TM,Gorsche R,Rassinger A,Poças-Fonseca MJ,Mach RL,Mach-Aigner AR

    更新日期:2014-09-11 00:00:00

  • Pre-concentration of microalga Euglena gracilis by alkalescent pH treatment and flocculation mechanism of Ca3(PO4)2, Mg3(PO4)2, and derivatives.

    abstract:Background:Microalgae are widely be used in carbon sequestration, food supplements, natural pigments, polyunsaturated fatty acids, biofuel applications, and wastewater treatment. However, the difficulties incurred in algae cell separation and harvesting, and the exorbitant cost required to overcome these challenges, ar...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-01734-8

    authors: Wu M,Li J,Qin H,Lei A,Zhu H,Hu Z,Wang J

    更新日期:2020-05-29 00:00:00

  • Correction to: Pelagibaca bermudensis promotes biofuel competence of Tetraselmis striata in a broad range of abiotic stressors: dynamics of quorum-sensing precursors and strategic improvement in lipid productivity.

    abstract::[This corrects the article DOI: 10.1186/s13068-018-1097-9.]. ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章,已发布勘误

    doi:10.1186/s13068-018-1185-x

    authors: Patidar SK,Kim SH,Kim JH,Park J,Park BS,Han MS

    更新日期:2018-07-03 00:00:00

  • Improvement of catalytic performance of lignin peroxidase for the enhanced degradation of lignocellulose biomass based on the imbedded electron-relay in long-range electron transfer route.

    abstract:BACKGROUND:Although lignin peroxidase is claimed as a key enzyme in enzyme-catalyzed lignin degradation, in vitro enzymatic degradation of lignin was not easily observed in lab-scale experiments. It implies that other factors may hinder the enzymatic degradation of lignin. Irreversible interaction between phenolic comp...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0664-1

    authors: Pham LT,Kim SJ,Kim YH

    更新日期:2016-11-15 00:00:00

  • A new method to evaluate temperature vs. pH activity profiles for biotechnological relevant enzymes.

    abstract:BACKGROUND:Glycoside hydrolases are important for various industrial and scientific applications. Determination of their temperature as well as pH optima and range is crucial to evaluate whether an enzyme is suitable for application in a biotechnological process. These basic characteristics of enzymes are generally det...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0923-9

    authors: Herlet J,Kornberger P,Roessler B,Glanz J,Schwarz WH,Liebl W,Zverlov VV

    更新日期:2017-10-11 00:00:00

  • Increased drought tolerance in plants engineered for low lignin and low xylan content.

    abstract:Background:We previously developed several strategies to engineer plants to produce cost-efficient biofuels from plant biomass. Engineered Arabidopsis plants with low xylan and lignin content showed normal growth and improved saccharification efficiency under standard growth conditions. However, it remains to be determ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1196-7

    authors: Yan J,Aznar A,Chalvin C,Birdseye DS,Baidoo EEK,Eudes A,Shih PM,Loqué D,Zhang A,Scheller HV

    更新日期:2018-07-18 00:00:00

  • The primary transcriptome of the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973.

    abstract:Background:Cyanobacteria have shown promising potential for the production of various biofuels and chemical feedstocks. Synechococcus elongatus UTEX 2973 is a fast-growing strain with pronounced tolerance to high temperatures and illumination. Hence, this strain appears to be ideal for the development of photosynthetic...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1215-8

    authors: Tan X,Hou S,Song K,Georg J,Klähn S,Lu X,Hess WR

    更新日期:2018-08-04 00:00:00

  • Deletion of meso-2,3-butanediol dehydrogenase gene budC for enhanced D-2,3-butanediol production in Bacillus licheniformis.

    abstract:BACKGROUND:D-2,3-butanediol has many industrial applications such as chiral reagents, solvents, anti-freeze agents, and low freezing point fuels. Traditional D-2,3-butanediol producing microorganisms, such as Klebsiella pneumonia and K. xoytoca, are pathogenic and not capable of producing D-2,3-butanediol at high optic...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-7-16

    authors: Qi G,Kang Y,Li L,Xiao A,Zhang S,Wen Z,Xu D,Chen S

    更新日期:2014-01-29 00:00:00

  • Stochastic techno-economic analysis of alcohol-to-jet fuel production.

    abstract:BACKGROUND:Alcohol-to-jet (ATJ) is one of the technical feasible biofuel technologies. It produces jet fuel from sugary, starchy, and lignocellulosic biomass, such as sugarcane, corn grain, and switchgrass, via fermentation of sugars to ethanol or other alcohols. This study assesses the ATJ biofuel production pathway f...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0702-7

    authors: Yao G,Staples MD,Malina R,Tyner WE

    更新日期:2017-01-19 00:00:00

  • Reduced use of phosphorus and water in sequential dark fermentation and anaerobic digestion of wheat straw and the application of ensiled steam-pretreated lucerne as a macronutrient provider in anaerobic digestion.

    abstract:Background:Current EU directives demand increased use of renewable fuels in the transportation sector but restrict governmental support for production of biofuels produced from crops. The use of intercropped lucerne and wheat may comply with the directives. In the current study, the combination of ensiled lucerne (Medi...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1280-z

    authors: Byrne E,Kovacs K,van Niel EWJ,Willquist K,Svensson SE,Kreuger E

    更新日期:2018-10-11 00:00:00

  • Presence does not imply activity: DNA and RNA patterns differ in response to salt perturbation in anaerobic digestion.

    abstract:BACKGROUND:The microbial community in anaerobic digestion is mainly monitored by means of DNA-based methods. This may lead to incorrect interpretation of the community parameters, because microbial abundance does not necessarily reflect activity. In this research, the difference between microbial community response on ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0652-5

    authors: De Vrieze J,Regueiro L,Props R,Vilchez-Vargas R,Jáuregui R,Pieper DH,Lema JM,Carballa M

    更新日期:2016-11-09 00:00:00

  • Metabolome analysis reveals a role for glyceraldehyde 3-phosphate dehydrogenase in the inhibition of C. thermocellum by ethanol.

    abstract:Background:Clostridium thermocellum is a promising microorganism for conversion of cellulosic biomass to biofuel, without added enzymes; however, the low ethanol titer produced by strains developed thus far is an obstacle to industrial application. Results:Here, we analyzed changes in the relative concentration of int...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0961-3

    authors: Tian L,Perot SJ,Stevenson D,Jacobson T,Lanahan AA,Amador-Noguez D,Olson DG,Lynd LR

    更新日期:2017-11-30 00:00:00

  • In situ label-free imaging of hemicellulose in plant cell walls using stimulated Raman scattering microscopy.

    abstract:BACKGROUND:Plant hemicellulose (largely xylan) is an excellent feedstock for renewable energy production and second only to cellulose in abundance. Beyond a source of fermentable sugars, xylan constitutes a critical polymer in the plant cell wall, where its precise role in wall assembly, maturation, and deconstruction ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0669-9

    authors: Zeng Y,Yarbrough JM,Mittal A,Tucker MP,Vinzant TB,Decker SR,Himmel ME

    更新日期:2016-11-22 00:00:00

  • Integrated analysis of hydrothermal flow through pretreatment.

    abstract:UNLABELLED: BACKGROUND:The impact of hydrothermal flowthrough (FT) pretreatment severity on pretreatment and solubilization performance metrics was evaluated for three milled feedstocks (corn stover, bagasse, and poplar) and two conversion systems (simultaneous saccharification and fermentation using yeast and fungal ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-5-49

    authors: Archambault-Leger V,Shao X,Lynd LR

    更新日期:2012-07-19 00:00:00

  • Engineering xylose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production.

    abstract:BACKGROUND:There has been a great deal of interest in fuel productions from lignocellulosic biomass to minimize the conflict between food and fuel use. The bioconversion of xylose, which is the second most abundant sugar present after glucose in lignocellulosic biomass, is important for the development of cost effectiv...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-134

    authors: Kurosawa K,Wewetzer SJ,Sinskey AJ

    更新日期:2013-09-16 00:00:00