The difference in effective light penetration may explain the superiority in photosynthetic efficiency of attached cultivation over the conventional open pond for microalgae.

Abstract:

BACKGROUND:The 'attached cultivation' technique for microalgae production, combining the immobilized biofilm technology with proper light dilution strategies, has shown improved biomass production and photosynthetic efficiency over conventional open-pond suspended cultures. However, how light is transferred and distributed inside the biofilm has not been clearly defined yet. RESULTS:In this research, the growth, photosynthetic oxygen evolution, and specific growth rate for microalgal cells in both open-pond and attached cultivation were studied to determine the effective light penetration at different phases of the cultivation. As a result, the light conditions inside the culture broth as well as the biofilm were revealed for the first time. Results showed that outdoor, in a conventional 20-cm deep open pond, all of the algal cells were fully illuminated in the first 3 days of cultivation. As the biomass concentration increased from day 4 to day 10, the light could only effectively penetrate 45.5% of the open-pond depth, and then effective light penetration gradually decreased to 31.1% at day 31, when the biomass density reached a maximum value of 0.45 g L(-1) or 90 g m(-2). In the attached cultivation system, under nitrogen-replete condition, almost 100% of the immobilized algal cells inside the biofilm were effectively illuminated from day 0 through day 10 when the biomass density increased from 8.8 g m(-2) to 107.6 g m(-2). CONCLUSION:Higher light penetration efficiency might be the reason why, using attached cultivation, observed values for photosynthetic efficiency were higher than those recorded in conventional open-pond suspended cultures.

journal_name

Biotechnol Biofuels

authors

Wang J,Liu J,Liu T

doi

10.1186/s13068-015-0240-0

subject

Has Abstract

pub_date

2015-03-26 00:00:00

pages

49

issn

1754-6834

pii

240

journal_volume

8

pub_type

杂志文章
  • Structure-based directed evolution improves S. cerevisiae growth on xylose by influencing in vivo enzyme performance.

    abstract:Background:Efficient bioethanol production from hemicellulose feedstocks by Saccharomyces cerevisiae requires xylose utilization. Whereas S. cerevisiae does not metabolize xylose, engineered strains that express xylose isomerase can metabolize xylose by converting it to xylulose. For this, the type II xylose isomerase ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1643-0

    authors: Lee M,Rozeboom HJ,Keuning E,de Waal P,Janssen DB

    更新日期:2020-01-11 00:00:00

  • One-step process of hydrothermal and alkaline treatment of wheat straw for improving the enzymatic saccharification.

    abstract:Background:To increase the production of bioethanol, a two-step process based on hydrothermal and dilute alkaline treatment was applied to reduce the natural resistance of biomass. However, the process required a large amount of water and a long operation time due to the solid/liquid separation before the alkaline trea...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1140-x

    authors: Sun S,Zhang L,Liu F,Fan X,Sun RC

    更新日期:2018-05-12 00:00:00

  • RCO-3 and COL-26 form an external-to-internal module that regulates the dual-affinity glucose transport system in Neurospora crassa.

    abstract:BACKGROUND:Low- and high-affinity glucose transport system is a conserved strategy of microorganism to cope with environmental glucose fluctuation for their growth and competitiveness. In Neurospora crassa, the dual-affinity glucose transport system consists of a low-affinity glucose transporter GLT-1 and two high-affi...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-021-01877-2

    authors: Li J,Liu Q,Li J,Lin L,Li X,Zhang Y,Tian C

    更新日期:2021-01-28 00:00:00

  • Effects of pH on steam explosion extraction of acetylated galactoglucomannan from Norway spruce.

    abstract:Background:Acetylated galactoglucomannan (AcGGM) is a complex hemicellulose found in softwoods such as Norway spruce (Picea abies). AcGGM has a large potential as a biorefinery feedstock and source of oligosaccharides for high-value industrial applications. Steam explosion is an effective method for extraction of carbo...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1300-z

    authors: Michalak L,Knutsen SH,Aarum I,Westereng B

    更新日期:2018-11-09 00:00:00

  • Increased ethylene production by overexpressing phosphoenolpyruvate carboxylase in the cyanobacterium Synechocystis PCC 6803.

    abstract:Background:Cyanobacteria can be metabolically engineered to convert CO2 to fuels and chemicals such as ethylene. A major challenge in such efforts is to optimize carbon fixation and partition towards target molecules. Results:The efe gene encoding an ethylene-forming enzyme was introduced into a strain of the cyanobac...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-1653-y

    authors: Durall C,Lindberg P,Yu J,Lindblad P

    更新日期:2020-01-28 00:00:00

  • Quantitative analysis of the effects of morphological changes on extracellular electron transfer rates in cyanobacteria.

    abstract:Background:Understanding the extracellular electron transport pathways in cyanobacteria is a major factor towards developing biophotovoltaics. Stressing cyanobacteria cells environmentally and then probing changes in physiology or metabolism following a significant change in electron transfer rates is a common approach...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-01788-8

    authors: Okedi TI,Fisher AC,Yunus K

    更新日期:2020-08-26 00:00:00

  • Lignosulfonate-mediated cellulase adsorption: enhanced enzymatic saccharification of lignocellulose through weakening nonproductive binding to lignin.

    abstract:BACKGROUND:Thermochemical pretreatment of lignocellulose is crucial to bioconversion in the fields of biorefinery and biofuels. However, the enzyme inhibitors in pretreatment hydrolysate make solid substrate washing and hydrolysate detoxification indispensable prior to enzymatic hydrolysis. Sulfite pretreatment to over...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-6-156

    authors: Wang Z,Zhu J,Fu Y,Qin M,Shao Z,Jiang J,Yang F

    更新日期:2013-11-05 00:00:00

  • Improved lipid production via fatty acid biosynthesis and free fatty acid recycling in engineered Synechocystis sp. PCC 6803.

    abstract:Background:Cyanobacteria are potential sources for third generation biofuels. Their capacity for biofuel production has been widely improved using metabolically engineered strains. In this study, we employed metabolic engineering design with target genes involved in selected processes including the fatty acid synthesis...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1349-8

    authors: Eungrasamee K,Miao R,Incharoensakdi A,Lindblad P,Jantaro S

    更新日期:2019-01-04 00:00:00

  • Facile isothermal solid acid catalyzed ionic liquid pretreatments to enhance the combined sugars production from Arundo donax Linn.

    abstract:BACKGROUND:Solid acid catalyzed inexpensive ionic liquid (IL) pretreatment is promising because of its effectiveness at decreasing biomass recalcitrance to subsequent enzymatic hydrolysis or in situ hydrolysis of carbohydrate oligomers. However, the conventional strategy was limited by the complex non-isothermal proces...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0589-8

    authors: You T,Shao L,Wang R,Zhang L,Xu F

    更新日期:2016-08-24 00:00:00

  • Quantitative visualization of subcellular lignocellulose revealing the mechanism of alkali pretreatment to promote methane production of rice straw.

    abstract:Background:As a renewable carbon source, biomass energy not only helps in resolving the management problems of lignocellulosic wastes, but also helps to alleviate the global climate change by controlling environmental pollution raised by their generation on a large scale. However, the bottleneck problem of extensive pr...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-1648-8

    authors: Li X,Sha J,Xia Y,Sheng K,Liu Y,He Y

    更新日期:2020-01-17 00:00:00

  • In situ label-free imaging of hemicellulose in plant cell walls using stimulated Raman scattering microscopy.

    abstract:BACKGROUND:Plant hemicellulose (largely xylan) is an excellent feedstock for renewable energy production and second only to cellulose in abundance. Beyond a source of fermentable sugars, xylan constitutes a critical polymer in the plant cell wall, where its precise role in wall assembly, maturation, and deconstruction ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0669-9

    authors: Zeng Y,Yarbrough JM,Mittal A,Tucker MP,Vinzant TB,Decker SR,Himmel ME

    更新日期:2016-11-22 00:00:00

  • Characterization of a glucose-tolerant β-glucosidase from Anoxybacillus sp. DT3-1.

    abstract:BACKGROUND:In general, biofuel production involves biomass pretreatment and enzymatic saccharification, followed by the subsequent sugar conversion to biofuel via fermentation. The crucial step in the production of biofuel from biomass is the enzymatic saccharification. Many of the commercial cellulase enzyme cocktails...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0587-x

    authors: Chan CS,Sin LL,Chan KG,Shamsir MS,Manan FA,Sani RK,Goh KM

    更新日期:2016-08-22 00:00:00

  • Evaluation of ammonia fibre expansion (AFEX) pretreatment for enzymatic hydrolysis of switchgrass harvested in different seasons and locations.

    abstract:BACKGROUND:When producing biofuels from dedicated feedstock, agronomic factors such as harvest time and location can impact the downstream production. Thus, this paper studies the effectiveness of ammonia fibre expansion (AFEX) pretreatment on two harvest times (July and October) and ecotypes/locations (Cave-in-Rock (C...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-3-1

    authors: Bals B,Rogers C,Jin M,Balan V,Dale B

    更新日期:2010-01-04 00:00:00

  • The two Rasamsonia emersonii α-glucuronidases, ReGH67 and ReGH115, show a different mode-of-action towards glucuronoxylan and glucuronoxylo-oligosaccharides.

    abstract:BACKGROUND:The production of biofuels and biochemicals from grass-type plant biomass requires a complete utilisation of the plant cellulose and hemicellulosic xylan via enzymatic degradation to their constituent monosaccharides. Generally, physical and/or thermochemical pretreatments are performed to enable access for ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0519-9

    authors: Martínez PM,Appeldoorn MM,Gruppen H,Kabel MA

    更新日期:2016-05-18 00:00:00

  • Elucidating the role of ferrous ion cocatalyst in enhancing dilute acid pretreatment of lignocellulosic biomass.

    abstract:BACKGROUND:Recently developed iron cocatalyst enhancement of dilute acid pretreatment of biomass is a promising approach for enhancing sugar release from recalcitrant lignocellulosic biomass. However, very little is known about the underlying mechanisms of this enhancement. In the current study, our aim was to identify...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-4-48

    authors: Wei H,Donohoe BS,Vinzant TB,Ciesielski PN,Wang W,Gedvilas LM,Zeng Y,Johnson DK,Ding SY,Himmel ME,Tucker MP

    更新日期:2011-11-10 00:00:00

  • Genomic comparison of Clostridium species with the potential of utilizing red algal biomass for biobutanol production.

    abstract:Background:Sustainable biofuels, which are widely considered as an attractive alternative to fossil fuels, can be generated by utilizing various biomass from the environment. Marine biomass, such as red algal biomass, is regarded as one potential renewable substrate source for biofuels conversion due to its abundance o...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-018-1044-9

    authors: Sun C,Zhang S,Xin F,Shanmugam S,Wu YR

    更新日期:2018-02-15 00:00:00

  • Bioprospecting of novel thermostable β-glucosidase from Bacillus subtilis RA10 and its application in biomass hydrolysis.

    abstract:Background:Saccharification is the most crucial and cost-intensive process in second generation biofuel production. The deficiency of β-glucosidase in commercial enzyme leads to incomplete biomass hydrolysis. The decomposition of biomass at high temperature environments leads us to isolate thermotolerant microbes with ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0932-8

    authors: Tiwari R,Singh PK,Singh S,Nain PKS,Nain L,Shukla P

    更新日期:2017-10-30 00:00:00

  • Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains.

    abstract:BACKGROUND:Due to its capacity to produce large amounts of cellulases, Trichoderma reesei is increasingly been researched in various fields of white biotechnology, especially in biofuel production from lignocellulosic biomass. The commercial enzyme mixtures produced at industrial scales are not well characterized, and ...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-1-18

    authors: Herpoël-Gimbert I,Margeot A,Dolla A,Jan G,Mollé D,Lignon S,Mathis H,Sigoillot JC,Monot F,Asther M

    更新日期:2008-12-23 00:00:00

  • Direct bioconversion of brown algae into ethanol by thermophilic bacterium Defluviitalea phaphyphila.

    abstract:BACKGROUND:Brown algae are promising feedstocks for biofuel production with inherent advantages of no structural lignin, high growth rate, and no competition for land and fresh water. However, it is difficult for one microorganism to convert all components of brown algae with different oxidoreduction potentials to etha...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0494-1

    authors: Ji SQ,Wang B,Lu M,Li FL

    更新日期:2016-04-01 00:00:00

  • Lytic polysaccharide monooxygenases and other oxidative enzymes are abundantly secreted by Aspergillus nidulans grown on different starches.

    abstract:BACKGROUND:Starch is the second most abundant plant-derived biomass and a major feedstock in non-food industrial applications and first generation biofuel production. In contrast to lignocellulose, detailed insight into fungal degradation of starch is currently lacking. This study explores the secretomes of Aspergillus...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0604-0

    authors: Nekiunaite L,Arntzen MØ,Svensson B,Vaaje-Kolstad G,Abou Hachem M

    更新日期:2016-09-01 00:00:00

  • Engineering Geobacillus thermoglucosidasius for direct utilisation of holocellulose from wheat straw.

    abstract:Background:A consolidated bioprocessing (CBP), where lignocellulose is converted into the desired product(s) in a single fermentative step without the addition of expensive degradative enzymes, represents the ideal solution of renewable routes to chemicals and fuels. Members of the genus Geobacillus are able to grow at...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1540-6

    authors: Bashir Z,Sheng L,Anil A,Lali A,Minton NP,Zhang Y

    更新日期:2019-08-20 00:00:00

  • Butanol production from laccase-pretreated brewer's spent grain.

    abstract:Background:Beer is the most popular alcoholic beverage worldwide. In the manufacture of beer, various by-products and residues are generated, and the most abundant (85% of total by-products) are spent grains. Thanks to its high (hemi)cellulose content (about 50% w/w dry weight), this secondary raw material is attractiv...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1383-1

    authors: Giacobbe S,Piscitelli A,Raganati F,Lettera V,Sannia G,Marzocchella A,Pezzella C

    更新日期:2019-03-05 00:00:00

  • De novo transcriptome sequencing and analysis revealed the molecular basis of rapid fat accumulation by black soldier fly (Hermetia illucens, L.) for development of insectival biodiesel.

    abstract:Background:Black soldier fly (BSF, Hermetia illucens L.) can efficiently degrade organic wastes and transform into a high fat containing insect biomass that could be used as feedstock for biodiesel production. Meanwhile, the molecular regulatory basis of fat accumulation by BSF is still unclear; it is necessary to iden...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1531-7

    authors: Zhu Z,Rehman KU,Yu Y,Liu X,Wang H,Tomberlin JK,Sze SH,Cai M,Zhang J,Yu Z,Zheng J,Zheng L

    更新日期:2019-08-09 00:00:00

  • Metabolic engineering of Escherichia coli for production of n-butanol from crude glycerol.

    abstract:BACKGROUND:Crude glycerol in the waste stream of the biodiesel production process is an abundant and renewable resource. However, the glycerol-based industry is usually afflicted by the cost for refinement of crude glycerol. This issue can be addressed by developing a microbial process to convert crude glycerol to valu...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-017-0857-2

    authors: Saini M,Wang ZW,Chiang CJ,Chao YP

    更新日期:2017-07-04 00:00:00

  • Bioelectrochemical production of hydrogen in an innovative pressure-retarded osmosis/microbial electrolysis cell system: experiments and modeling.

    abstract:BACKGROUND:While microbial electrolysis cells (MECs) can simultaneously produce bioelectrochemical hydrogen and treat wastewater, they consume considerable energy to overcome the unfavorable thermodynamics, which is not sustainable and economically feasible in practical applications. This study presents a proof-of-conc...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-015-0305-0

    authors: Yuan H,Lu Y,Abu-Reesh IM,He Z

    更新日期:2015-08-14 00:00:00

  • Metabolic engineering of Yarrowia lipolytica for thermoresistance and enhanced erythritol productivity.

    abstract:Background:Functional sugar alcohols have been widely used in the food, medicine, and pharmaceutical industries for their unique properties. Among these, erythritol is a zero calories sweetener produced by the yeast Yarrowia lipolytica. However, in wild-type strains, erythritol is produced with low productivity and yie...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-020-01815-8

    authors: Wang N,Chi P,Zou Y,Xu Y,Xu S,Bilal M,Fickers P,Cheng H

    更新日期:2020-10-20 00:00:00

  • A green-light inducible lytic system for cyanobacterial cells.

    abstract:BACKGROUND:Cyanobacteria are an attractive candidate for the production of biofuel because of their ability to capture carbon dioxide by photosynthesis and grow on non-arable land. However, because huge quantities of water are required for cultivation, strict water management is one of the greatest issues in algae- and...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/1754-6834-7-56

    authors: Miyake K,Abe K,Ferri S,Nakajima M,Nakamura M,Yoshida W,Kojima K,Ikebukuro K,Sode K

    更新日期:2014-04-09 00:00:00

  • A complete annotation of the chromosomes of the cellulase producer Trichoderma reesei provides insights in gene clusters, their expression and reveals genes required for fitness.

    abstract:BACKGROUND:Investigations on a few eukaryotic model organisms showed that many genes are non-randomly distributed on chromosomes. In addition, chromosome ends frequently possess genes that are important for the fitness of the organisms. Trichoderma reesei is an industrial producer of enzymes for food, feed and biorefin...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0488-z

    authors: Druzhinina IS,Kopchinskiy AG,Kubicek EM,Kubicek CP

    更新日期:2016-03-29 00:00:00

  • A novel and simple approach to the good process performance of methane recovery from lignocellulosic biomass alone.

    abstract:BACKGROUND:Solid-state anaerobic digestion (SS-AD) has been increasingly used for lignocellulosic biomass treatment. However, the separate reactor required for pretreatment prior digestion, poor treatment capacity, and process stability inhibit further development of the SS-AD. In this study, a novel method called SS-A...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-016-0530-1

    authors: Yao Y,Chen S

    更新日期:2016-06-01 00:00:00

  • Production of xylooligosaccharides and monosaccharides from poplar by a two-step acetic acid and peroxide/acetic acid pretreatment.

    abstract:Background:Populus (poplar) tree species including hybrid varieties are considered as promising biomass feedstock for biofuels and biochemicals production due to their fast growing, short vegetative cycle, and widely distribution. In this work, poplar was pretreated with acetic acid (AC) to produce xylooligosaccharides...

    journal_title:Biotechnology for biofuels

    pub_type: 杂志文章

    doi:10.1186/s13068-019-1423-x

    authors: Wen P,Zhang T,Wang J,Lian Z,Zhang J

    更新日期:2019-04-15 00:00:00